L(s) = 1 | − 2·2-s + 4-s − 7-s + 10·9-s − 11-s + 2·14-s − 20·18-s + 2·22-s + 9·23-s − 25-s − 28-s − 2·29-s + 10·36-s − 2·37-s − 2·43-s − 44-s − 18·46-s + 2·50-s − 2·53-s + 4·58-s − 10·63-s − 2·67-s − 2·71-s + 4·74-s + 77-s − 2·79-s + 55·81-s + ⋯ |
L(s) = 1 | − 2·2-s + 4-s − 7-s + 10·9-s − 11-s + 2·14-s − 20·18-s + 2·22-s + 9·23-s − 25-s − 28-s − 2·29-s + 10·36-s − 2·37-s − 2·43-s − 44-s − 18·46-s + 2·50-s − 2·53-s + 4·58-s − 10·63-s − 2·67-s − 2·71-s + 4·74-s + 77-s − 2·79-s + 55·81-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(7^{10} \cdot 11^{20}\right)^{s/2} \, \Gamma_{\C}(s)^{10} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(7^{10} \cdot 11^{20}\right)^{s/2} \, \Gamma_{\C}(s)^{10} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3470777268\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3470777268\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \) |
| 11 | \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \) |
good | 2 | \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2} \) |
| 3 | \( ( 1 - T )^{10}( 1 + T )^{10} \) |
| 5 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \) |
| 13 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \) |
| 17 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \) |
| 19 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \) |
| 23 | \( ( 1 - T )^{10}( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \) |
| 29 | \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2} \) |
| 31 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \) |
| 37 | \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2} \) |
| 41 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \) |
| 43 | \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2} \) |
| 47 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \) |
| 53 | \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2} \) |
| 59 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \) |
| 61 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \) |
| 67 | \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2} \) |
| 71 | \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2} \) |
| 73 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \) |
| 79 | \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2} \) |
| 83 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \) |
| 89 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \) |
| 97 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{20} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−3.95929769460795635013533977062, −3.87646094127987695373545787771, −3.86821169394955749031194947281, −3.68154530721578523172607219704, −3.63247732130412124206802493590, −3.44748069306915787434706461997, −3.40213915859692228723671761040, −3.25452678121079886770695943691, −3.15072789466233822118957036669, −3.03128453526091516159468638464, −2.87329574698440095347916999708, −2.71046856899198087982673694632, −2.49329779713884158149694995665, −2.32626641701206885927118657973, −2.28901676368649776640292863320, −2.25587779715616670595027667891, −1.66386079862212248245745449601, −1.62695862705032066453783647584, −1.55762667507813373628196350623, −1.54912102598778970747279317216, −1.35661443771431512359338153740, −1.32885188083122373874004572421, −1.23410552624123066304982293148, −1.02340311962395258080551571696, −0.942693466188934649593596428753,
0.942693466188934649593596428753, 1.02340311962395258080551571696, 1.23410552624123066304982293148, 1.32885188083122373874004572421, 1.35661443771431512359338153740, 1.54912102598778970747279317216, 1.55762667507813373628196350623, 1.62695862705032066453783647584, 1.66386079862212248245745449601, 2.25587779715616670595027667891, 2.28901676368649776640292863320, 2.32626641701206885927118657973, 2.49329779713884158149694995665, 2.71046856899198087982673694632, 2.87329574698440095347916999708, 3.03128453526091516159468638464, 3.15072789466233822118957036669, 3.25452678121079886770695943691, 3.40213915859692228723671761040, 3.44748069306915787434706461997, 3.63247732130412124206802493590, 3.68154530721578523172607219704, 3.86821169394955749031194947281, 3.87646094127987695373545787771, 3.95929769460795635013533977062
Plot not available for L-functions of degree greater than 10.