Properties

Label 4-1134e2-1.1-c1e2-0-45
Degree $4$
Conductor $1285956$
Sign $1$
Analytic cond. $81.9936$
Root an. cond. $3.00915$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 3·4-s + 5·7-s − 4·8-s + 4·13-s − 10·14-s + 5·16-s + 6·17-s − 2·19-s − 3·23-s + 5·25-s − 8·26-s + 15·28-s − 6·29-s + 10·31-s − 6·32-s − 12·34-s − 8·37-s + 4·38-s + 3·41-s − 2·43-s + 6·46-s + 6·47-s + 18·49-s − 10·50-s + 12·52-s + 6·53-s + ⋯
L(s)  = 1  − 1.41·2-s + 3/2·4-s + 1.88·7-s − 1.41·8-s + 1.10·13-s − 2.67·14-s + 5/4·16-s + 1.45·17-s − 0.458·19-s − 0.625·23-s + 25-s − 1.56·26-s + 2.83·28-s − 1.11·29-s + 1.79·31-s − 1.06·32-s − 2.05·34-s − 1.31·37-s + 0.648·38-s + 0.468·41-s − 0.304·43-s + 0.884·46-s + 0.875·47-s + 18/7·49-s − 1.41·50-s + 1.66·52-s + 0.824·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1285956 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1285956 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1285956\)    =    \(2^{2} \cdot 3^{8} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(81.9936\)
Root analytic conductor: \(3.00915\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1285956,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.807423923\)
\(L(\frac12)\) \(\approx\) \(1.807423923\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + T )^{2} \)
3 \( 1 \)
7$C_2$ \( 1 - 5 T + p T^{2} \)
good5$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 - 4 T + 3 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
17$C_2^2$ \( 1 - 6 T + 19 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
19$C_2^2$ \( 1 + 2 T - 15 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
23$C_2^2$ \( 1 + 3 T - 14 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
29$C_2^2$ \( 1 + 6 T + 7 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
31$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \)
37$C_2^2$ \( 1 + 8 T + 27 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
41$C_2^2$ \( 1 - 3 T - 32 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
43$C_2^2$ \( 1 + 2 T - 39 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
47$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
53$C_2^2$ \( 1 - 6 T - 17 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
59$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 15 T + p T^{2} )^{2} \)
73$C_2^2$ \( 1 + 11 T + 48 T^{2} + 11 p T^{3} + p^{2} T^{4} \)
79$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - 9 T - 8 T^{2} - 9 p T^{3} + p^{2} T^{4} \)
97$C_2^2$ \( 1 + 2 T - 93 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.00762452544365622256816864013, −9.646826547508947126106558904146, −9.084912266370969053508678841913, −8.629019942972356023061823142025, −8.349843226609282130415069876291, −8.218229652425791815592869543154, −7.60498116260930810576729796684, −7.45400219865103127652679304904, −6.80832067136748689429010235194, −6.40811020488025342340455604687, −5.69775137207133593565392116214, −5.61715880863236205190427037923, −4.84657227239813815111995490214, −4.51186295546731558450092998557, −3.56212991025573369338545002227, −3.46058886128328040526502467195, −2.28677352455988310763422505300, −2.09709791278411172227671144391, −1.18571287118490488614326846276, −0.919365518272345084312670568734, 0.919365518272345084312670568734, 1.18571287118490488614326846276, 2.09709791278411172227671144391, 2.28677352455988310763422505300, 3.46058886128328040526502467195, 3.56212991025573369338545002227, 4.51186295546731558450092998557, 4.84657227239813815111995490214, 5.61715880863236205190427037923, 5.69775137207133593565392116214, 6.40811020488025342340455604687, 6.80832067136748689429010235194, 7.45400219865103127652679304904, 7.60498116260930810576729796684, 8.218229652425791815592869543154, 8.349843226609282130415069876291, 8.629019942972356023061823142025, 9.084912266370969053508678841913, 9.646826547508947126106558904146, 10.00762452544365622256816864013

Graph of the $Z$-function along the critical line