L(s) = 1 | − 2·2-s + 3·4-s + 5·7-s − 4·8-s + 4·13-s − 10·14-s + 5·16-s + 6·17-s − 2·19-s − 3·23-s + 5·25-s − 8·26-s + 15·28-s − 6·29-s + 10·31-s − 6·32-s − 12·34-s − 8·37-s + 4·38-s + 3·41-s − 2·43-s + 6·46-s + 6·47-s + 18·49-s − 10·50-s + 12·52-s + 6·53-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 3/2·4-s + 1.88·7-s − 1.41·8-s + 1.10·13-s − 2.67·14-s + 5/4·16-s + 1.45·17-s − 0.458·19-s − 0.625·23-s + 25-s − 1.56·26-s + 2.83·28-s − 1.11·29-s + 1.79·31-s − 1.06·32-s − 2.05·34-s − 1.31·37-s + 0.648·38-s + 0.468·41-s − 0.304·43-s + 0.884·46-s + 0.875·47-s + 18/7·49-s − 1.41·50-s + 1.66·52-s + 0.824·53-s + ⋯ |
Λ(s)=(=(1285956s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(1285956s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1285956
= 22⋅38⋅72
|
Sign: |
1
|
Analytic conductor: |
81.9936 |
Root analytic conductor: |
3.00915 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 1285956, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.807423923 |
L(21) |
≈ |
1.807423923 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | (1+T)2 |
| 3 | | 1 |
| 7 | C2 | 1−5T+pT2 |
good | 5 | C22 | 1−pT2+p2T4 |
| 11 | C22 | 1−pT2+p2T4 |
| 13 | C22 | 1−4T+3T2−4pT3+p2T4 |
| 17 | C22 | 1−6T+19T2−6pT3+p2T4 |
| 19 | C22 | 1+2T−15T2+2pT3+p2T4 |
| 23 | C22 | 1+3T−14T2+3pT3+p2T4 |
| 29 | C22 | 1+6T+7T2+6pT3+p2T4 |
| 31 | C2 | (1−5T+pT2)2 |
| 37 | C22 | 1+8T+27T2+8pT3+p2T4 |
| 41 | C22 | 1−3T−32T2−3pT3+p2T4 |
| 43 | C22 | 1+2T−39T2+2pT3+p2T4 |
| 47 | C2 | (1−3T+pT2)2 |
| 53 | C22 | 1−6T−17T2−6pT3+p2T4 |
| 59 | C2 | (1+12T+pT2)2 |
| 61 | C2 | (1−8T+pT2)2 |
| 67 | C2 | (1−8T+pT2)2 |
| 71 | C2 | (1−15T+pT2)2 |
| 73 | C22 | 1+11T+48T2+11pT3+p2T4 |
| 79 | C2 | (1+T+pT2)2 |
| 83 | C22 | 1−pT2+p2T4 |
| 89 | C22 | 1−9T−8T2−9pT3+p2T4 |
| 97 | C22 | 1+2T−93T2+2pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.00762452544365622256816864013, −9.646826547508947126106558904146, −9.084912266370969053508678841913, −8.629019942972356023061823142025, −8.349843226609282130415069876291, −8.218229652425791815592869543154, −7.60498116260930810576729796684, −7.45400219865103127652679304904, −6.80832067136748689429010235194, −6.40811020488025342340455604687, −5.69775137207133593565392116214, −5.61715880863236205190427037923, −4.84657227239813815111995490214, −4.51186295546731558450092998557, −3.56212991025573369338545002227, −3.46058886128328040526502467195, −2.28677352455988310763422505300, −2.09709791278411172227671144391, −1.18571287118490488614326846276, −0.919365518272345084312670568734,
0.919365518272345084312670568734, 1.18571287118490488614326846276, 2.09709791278411172227671144391, 2.28677352455988310763422505300, 3.46058886128328040526502467195, 3.56212991025573369338545002227, 4.51186295546731558450092998557, 4.84657227239813815111995490214, 5.61715880863236205190427037923, 5.69775137207133593565392116214, 6.40811020488025342340455604687, 6.80832067136748689429010235194, 7.45400219865103127652679304904, 7.60498116260930810576729796684, 8.218229652425791815592869543154, 8.349843226609282130415069876291, 8.629019942972356023061823142025, 9.084912266370969053508678841913, 9.646826547508947126106558904146, 10.00762452544365622256816864013