Properties

Label 4-1408e2-1.1-c1e2-0-9
Degree $4$
Conductor $1982464$
Sign $-1$
Analytic cond. $126.403$
Root an. cond. $3.35304$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5·9-s + 7·25-s + 12·41-s − 14·49-s − 28·73-s + 16·81-s − 6·89-s + 22·97-s − 18·113-s + 121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 14·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + ⋯
L(s)  = 1  − 5/3·9-s + 7/5·25-s + 1.87·41-s − 2·49-s − 3.27·73-s + 16/9·81-s − 0.635·89-s + 2.23·97-s − 1.69·113-s + 1/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.07·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1982464 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1982464 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1982464\)    =    \(2^{14} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(126.403\)
Root analytic conductor: \(3.35304\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 1982464,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
11$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good3$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
5$C_2^2$ \( 1 - 7 T^{2} + p^{2} T^{4} \)
7$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2^2$ \( 1 - 14 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
23$C_2^2$ \( 1 + 19 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
31$C_2^2$ \( 1 + 59 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 - 71 T^{2} + p^{2} T^{4} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
47$C_2^2$ \( 1 - 14 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
71$C_2^2$ \( 1 + 67 T^{2} + p^{2} T^{4} \)
73$C_2$ \( ( 1 + 14 T + p T^{2} )^{2} \)
79$C_2^2$ \( 1 + 50 T^{2} + p^{2} T^{4} \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
89$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 11 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.49835644526562820751145546712, −7.24617508948085198077495469456, −6.56992692503154111866039455726, −6.25196970916227672706984504693, −5.86859071890871929207862888597, −5.43650698808037033945814347019, −4.97668179853506714315488829826, −4.52078974428499654412231784822, −4.02481282197945374033964791969, −3.24328379426133235904953649106, −2.98168630676466509236369751542, −2.55936863139146084492699063201, −1.78834994452715524430178415043, −0.946655977570457917627937896016, 0, 0.946655977570457917627937896016, 1.78834994452715524430178415043, 2.55936863139146084492699063201, 2.98168630676466509236369751542, 3.24328379426133235904953649106, 4.02481282197945374033964791969, 4.52078974428499654412231784822, 4.97668179853506714315488829826, 5.43650698808037033945814347019, 5.86859071890871929207862888597, 6.25196970916227672706984504693, 6.56992692503154111866039455726, 7.24617508948085198077495469456, 7.49835644526562820751145546712

Graph of the $Z$-function along the critical line