Properties

Label 4-234e2-1.1-c3e2-0-3
Degree $4$
Conductor $54756$
Sign $1$
Analytic cond. $190.617$
Root an. cond. $3.71570$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·4-s + 78·13-s + 16·16-s + 92·17-s + 224·23-s + 186·25-s + 340·29-s − 184·43-s + 490·49-s − 312·52-s − 1.11e3·53-s + 1.80e3·61-s − 64·64-s − 368·68-s + 720·79-s − 896·92-s − 744·100-s − 1.24e3·101-s − 1.90e3·103-s + 472·107-s + 2.52e3·113-s − 1.36e3·116-s + 1.76e3·121-s + 127-s + 131-s + 137-s + 139-s + ⋯
L(s)  = 1  − 1/2·4-s + 1.66·13-s + 1/4·16-s + 1.31·17-s + 2.03·23-s + 1.48·25-s + 2.17·29-s − 0.652·43-s + 10/7·49-s − 0.832·52-s − 2.89·53-s + 3.78·61-s − 1/8·64-s − 0.656·68-s + 1.02·79-s − 1.01·92-s − 0.743·100-s − 1.22·101-s − 1.82·103-s + 0.426·107-s + 2.10·113-s − 1.08·116-s + 1.32·121-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 54756 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 54756 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(54756\)    =    \(2^{2} \cdot 3^{4} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(190.617\)
Root analytic conductor: \(3.71570\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 54756,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.061781957\)
\(L(\frac12)\) \(\approx\) \(3.061781957\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p^{2} T^{2} \)
3 \( 1 \)
13$C_2$ \( 1 - 6 p T + p^{3} T^{2} \)
good5$C_2^2$ \( 1 - 186 T^{2} + p^{6} T^{4} \)
7$C_2^2$ \( 1 - 10 p^{2} T^{2} + p^{6} T^{4} \)
11$C_2^2$ \( 1 - 1762 T^{2} + p^{6} T^{4} \)
17$C_2$ \( ( 1 - 46 T + p^{3} T^{2} )^{2} \)
19$C_2^2$ \( 1 - 9362 T^{2} + p^{6} T^{4} \)
23$C_2$ \( ( 1 - 112 T + p^{3} T^{2} )^{2} \)
29$C_2$ \( ( 1 - 170 T + p^{3} T^{2} )^{2} \)
31$C_2^2$ \( 1 - 47482 T^{2} + p^{6} T^{4} \)
37$C_2^2$ \( 1 - 101290 T^{2} + p^{6} T^{4} \)
41$C_2^2$ \( 1 + 6558 T^{2} + p^{6} T^{4} \)
43$C_2$ \( ( 1 + 92 T + p^{3} T^{2} )^{2} \)
47$C_2^2$ \( 1 - 194650 T^{2} + p^{6} T^{4} \)
53$C_2$ \( ( 1 + 558 T + p^{3} T^{2} )^{2} \)
59$C_2^2$ \( 1 - 405282 T^{2} + p^{6} T^{4} \)
61$C_2$ \( ( 1 - 902 T + p^{3} T^{2} )^{2} \)
67$C_2^2$ \( 1 - 184210 T^{2} + p^{6} T^{4} \)
71$C_2^2$ \( 1 + 149078 T^{2} + p^{6} T^{4} \)
73$C_2^2$ \( 1 - 85810 T^{2} + p^{6} T^{4} \)
79$C_2$ \( ( 1 - 360 T + p^{3} T^{2} )^{2} \)
83$C_2^2$ \( 1 - 1111890 T^{2} + p^{6} T^{4} \)
89$C_2^2$ \( 1 - 1368322 T^{2} + p^{6} T^{4} \)
97$C_2^2$ \( 1 + 179710 T^{2} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.05037237374991078673053131079, −11.37096372431685723576425127635, −10.96070596289974715157243391367, −10.63816751645279271955505185667, −9.975510360396630275980711510891, −9.638518538297378943700459105380, −8.788271752617548098974140432651, −8.668640693757695192909685536691, −8.209318695485616783360084769529, −7.55069717245020761795585796219, −6.67556027171040608879739280615, −6.62487570409707098894129193587, −5.74182307183453133332150239171, −5.09333489016424149289860403188, −4.77850817902265293733670289695, −3.82573831139942949882045473030, −3.28655574158310369613010943963, −2.69683568595928777468641275575, −1.15156768478114842076101098008, −0.952698738893461562569621496680, 0.952698738893461562569621496680, 1.15156768478114842076101098008, 2.69683568595928777468641275575, 3.28655574158310369613010943963, 3.82573831139942949882045473030, 4.77850817902265293733670289695, 5.09333489016424149289860403188, 5.74182307183453133332150239171, 6.62487570409707098894129193587, 6.67556027171040608879739280615, 7.55069717245020761795585796219, 8.209318695485616783360084769529, 8.668640693757695192909685536691, 8.788271752617548098974140432651, 9.638518538297378943700459105380, 9.975510360396630275980711510891, 10.63816751645279271955505185667, 10.96070596289974715157243391367, 11.37096372431685723576425127635, 12.05037237374991078673053131079

Graph of the $Z$-function along the critical line