Properties

Label 4-395136-1.1-c1e2-0-26
Degree $4$
Conductor $395136$
Sign $-1$
Analytic cond. $25.1942$
Root an. cond. $2.24039$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 7-s − 8-s + 9-s − 4·11-s − 14-s + 16-s − 18-s + 4·22-s + 4·23-s − 2·25-s + 28-s + 4·29-s − 32-s + 36-s − 4·37-s − 12·43-s − 4·44-s − 4·46-s + 49-s + 2·50-s − 16·53-s − 56-s − 4·58-s + 63-s + 64-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.377·7-s − 0.353·8-s + 1/3·9-s − 1.20·11-s − 0.267·14-s + 1/4·16-s − 0.235·18-s + 0.852·22-s + 0.834·23-s − 2/5·25-s + 0.188·28-s + 0.742·29-s − 0.176·32-s + 1/6·36-s − 0.657·37-s − 1.82·43-s − 0.603·44-s − 0.589·46-s + 1/7·49-s + 0.282·50-s − 2.19·53-s − 0.133·56-s − 0.525·58-s + 0.125·63-s + 1/8·64-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 395136 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 395136 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(395136\)    =    \(2^{7} \cdot 3^{2} \cdot 7^{3}\)
Sign: $-1$
Analytic conductor: \(25.1942\)
Root analytic conductor: \(2.24039\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 395136,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 + T \)
3$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
7$C_1$ \( 1 - T \)
good5$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
11$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2^2$ \( 1 - 26 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
23$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
31$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
37$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
41$C_2^2$ \( 1 + 70 T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
47$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
59$C_2^2$ \( 1 + 70 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 + 50 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \)
73$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
79$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 16 T + p T^{2} ) \)
83$C_2^2$ \( 1 + 38 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 30 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 + 102 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.411521090255994624785953587423, −8.052477028057648756115602305972, −7.54628166700195695041542955996, −7.23098376625686350759207285220, −6.58757381477372958101054261593, −6.28921047893520197455827551076, −5.54286182184328238279245201745, −5.01012367862760280737746076876, −4.79245704236827232363207773370, −3.94307762210019179524961979588, −3.21664771874035875051559967518, −2.75886454611533471050190400956, −1.96516192096943474380630638016, −1.28353908819465834293012833127, 0, 1.28353908819465834293012833127, 1.96516192096943474380630638016, 2.75886454611533471050190400956, 3.21664771874035875051559967518, 3.94307762210019179524961979588, 4.79245704236827232363207773370, 5.01012367862760280737746076876, 5.54286182184328238279245201745, 6.28921047893520197455827551076, 6.58757381477372958101054261593, 7.23098376625686350759207285220, 7.54628166700195695041542955996, 8.052477028057648756115602305972, 8.411521090255994624785953587423

Graph of the $Z$-function along the critical line