L(s) = 1 | − 2-s + 4-s + 7-s − 8-s + 9-s − 4·11-s − 14-s + 16-s − 18-s + 4·22-s + 4·23-s − 2·25-s + 28-s + 4·29-s − 32-s + 36-s − 4·37-s − 12·43-s − 4·44-s − 4·46-s + 49-s + 2·50-s − 16·53-s − 56-s − 4·58-s + 63-s + 64-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1/2·4-s + 0.377·7-s − 0.353·8-s + 1/3·9-s − 1.20·11-s − 0.267·14-s + 1/4·16-s − 0.235·18-s + 0.852·22-s + 0.834·23-s − 2/5·25-s + 0.188·28-s + 0.742·29-s − 0.176·32-s + 1/6·36-s − 0.657·37-s − 1.82·43-s − 0.603·44-s − 0.589·46-s + 1/7·49-s + 0.282·50-s − 2.19·53-s − 0.133·56-s − 0.525·58-s + 0.125·63-s + 1/8·64-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 395136 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 395136 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | $C_1$ | \( 1 + T \) |
| 3 | $C_1$$\times$$C_1$ | \( ( 1 - T )( 1 + T ) \) |
| 7 | $C_1$ | \( 1 - T \) |
good | 5 | $C_2^2$ | \( 1 + 2 T^{2} + p^{2} T^{4} \) |
| 11 | $C_2$$\times$$C_2$ | \( ( 1 + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 13 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 17 | $C_2^2$ | \( 1 - 26 T^{2} + p^{2} T^{4} \) |
| 19 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 23 | $C_2$$\times$$C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 29 | $C_2$ | \( ( 1 - 2 T + p T^{2} )^{2} \) |
| 31 | $C_2^2$ | \( 1 - 34 T^{2} + p^{2} T^{4} \) |
| 37 | $C_2$$\times$$C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 41 | $C_2^2$ | \( 1 + 70 T^{2} + p^{2} T^{4} \) |
| 43 | $C_2$$\times$$C_2$ | \( ( 1 + 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 47 | $C_2^2$ | \( 1 + 14 T^{2} + p^{2} T^{4} \) |
| 53 | $C_2$$\times$$C_2$ | \( ( 1 + 2 T + p T^{2} )( 1 + 14 T + p T^{2} ) \) |
| 59 | $C_2^2$ | \( 1 + 70 T^{2} + p^{2} T^{4} \) |
| 61 | $C_2^2$ | \( 1 + 50 T^{2} + p^{2} T^{4} \) |
| 67 | $C_2$ | \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) |
| 71 | $C_2$$\times$$C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \) |
| 73 | $C_2$ | \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) |
| 79 | $C_2$$\times$$C_2$ | \( ( 1 + p T^{2} )( 1 + 16 T + p T^{2} ) \) |
| 83 | $C_2^2$ | \( 1 + 38 T^{2} + p^{2} T^{4} \) |
| 89 | $C_2^2$ | \( 1 + 30 T^{2} + p^{2} T^{4} \) |
| 97 | $C_2^2$ | \( 1 + 102 T^{2} + p^{2} T^{4} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.411521090255994624785953587423, −8.052477028057648756115602305972, −7.54628166700195695041542955996, −7.23098376625686350759207285220, −6.58757381477372958101054261593, −6.28921047893520197455827551076, −5.54286182184328238279245201745, −5.01012367862760280737746076876, −4.79245704236827232363207773370, −3.94307762210019179524961979588, −3.21664771874035875051559967518, −2.75886454611533471050190400956, −1.96516192096943474380630638016, −1.28353908819465834293012833127, 0,
1.28353908819465834293012833127, 1.96516192096943474380630638016, 2.75886454611533471050190400956, 3.21664771874035875051559967518, 3.94307762210019179524961979588, 4.79245704236827232363207773370, 5.01012367862760280737746076876, 5.54286182184328238279245201745, 6.28921047893520197455827551076, 6.58757381477372958101054261593, 7.23098376625686350759207285220, 7.54628166700195695041542955996, 8.052477028057648756115602305972, 8.411521090255994624785953587423