Properties

Label 4-800e2-1.1-c1e2-0-42
Degree $4$
Conductor $640000$
Sign $-1$
Analytic cond. $40.8069$
Root an. cond. $2.52745$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·9-s + 12·13-s − 4·17-s − 4·29-s − 4·37-s − 20·41-s − 10·49-s − 4·53-s + 4·61-s − 20·73-s − 5·81-s − 12·89-s − 20·97-s + 28·101-s − 28·109-s + 12·113-s − 24·117-s − 6·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 8·153-s + 157-s + 163-s + ⋯
L(s)  = 1  − 2/3·9-s + 3.32·13-s − 0.970·17-s − 0.742·29-s − 0.657·37-s − 3.12·41-s − 1.42·49-s − 0.549·53-s + 0.512·61-s − 2.34·73-s − 5/9·81-s − 1.27·89-s − 2.03·97-s + 2.78·101-s − 2.68·109-s + 1.12·113-s − 2.21·117-s − 0.545·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.646·153-s + 0.0798·157-s + 0.0783·163-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 640000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 640000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(640000\)    =    \(2^{10} \cdot 5^{4}\)
Sign: $-1$
Analytic conductor: \(40.8069\)
Root analytic conductor: \(2.52745\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 640000,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
7$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
29$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
37$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
53$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
73$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.342968450155288042234107768084, −7.933255428320458728096933472013, −7.09220086136237769951318187486, −6.65626711268883250315661359452, −6.43835571044936056762999337507, −5.72826135512171935442272385538, −5.66998865083407238107881420692, −4.87167873852283683641042254046, −4.31557601476168062386055327408, −3.54449204425088871611270686726, −3.53586243928816745150820886016, −2.79777579346030768453822089895, −1.69107692367690499793202503994, −1.43961637684802321828989795992, 0, 1.43961637684802321828989795992, 1.69107692367690499793202503994, 2.79777579346030768453822089895, 3.53586243928816745150820886016, 3.54449204425088871611270686726, 4.31557601476168062386055327408, 4.87167873852283683641042254046, 5.66998865083407238107881420692, 5.72826135512171935442272385538, 6.43835571044936056762999337507, 6.65626711268883250315661359452, 7.09220086136237769951318187486, 7.933255428320458728096933472013, 8.342968450155288042234107768084

Graph of the $Z$-function along the critical line