Properties

Label 4-936e2-1.1-c1e2-0-27
Degree $4$
Conductor $876096$
Sign $-1$
Analytic cond. $55.8606$
Root an. cond. $2.73386$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·7-s − 4·13-s − 12·19-s + 4·25-s + 8·31-s + 18·37-s + 12·43-s + 2·49-s + 8·61-s + 14·73-s − 8·79-s + 16·91-s − 10·97-s − 20·103-s − 18·109-s − 8·121-s + 127-s + 131-s + 48·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 3·169-s + ⋯
L(s)  = 1  − 1.51·7-s − 1.10·13-s − 2.75·19-s + 4/5·25-s + 1.43·31-s + 2.95·37-s + 1.82·43-s + 2/7·49-s + 1.02·61-s + 1.63·73-s − 0.900·79-s + 1.67·91-s − 1.01·97-s − 1.97·103-s − 1.72·109-s − 0.727·121-s + 0.0887·127-s + 0.0873·131-s + 4.16·133-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 3/13·169-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 876096 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 876096 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(876096\)    =    \(2^{6} \cdot 3^{4} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(55.8606\)
Root analytic conductor: \(2.73386\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 876096,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13$C_2$ \( 1 + 4 T + p T^{2} \)
good5$C_2^2$ \( 1 - 4 T^{2} + p^{2} T^{4} \)
7$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2^2$ \( 1 + 8 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
19$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
23$C_2^2$ \( 1 - 14 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
37$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 - 8 T + p T^{2} ) \)
41$C_2^2$ \( 1 - 52 T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 - 4 T + p T^{2} ) \)
47$C_2^2$ \( 1 + 80 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
59$C_2^2$ \( 1 + 8 T^{2} + p^{2} T^{4} \)
61$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2^2$ \( 1 + 128 T^{2} + p^{2} T^{4} \)
73$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 - 4 T + p T^{2} ) \)
79$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
83$C_2^2$ \( 1 + 56 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - 60 T^{2} + p^{2} T^{4} \)
97$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.011041589105212816329112188166, −7.58435567064855486686723796098, −6.83783779886561071593467447761, −6.67158334968123005796447784320, −6.25787428435554820454968357998, −5.95287424577545614572814364452, −5.24936749392889093682839921044, −4.63640353885541368604350705184, −4.13376904574689612252138819680, −3.98331010642415475247011050545, −2.86108699411148756398142603227, −2.68604415269591467528290082955, −2.21756293670217156757659842930, −0.933841790213200869561946347150, 0, 0.933841790213200869561946347150, 2.21756293670217156757659842930, 2.68604415269591467528290082955, 2.86108699411148756398142603227, 3.98331010642415475247011050545, 4.13376904574689612252138819680, 4.63640353885541368604350705184, 5.24936749392889093682839921044, 5.95287424577545614572814364452, 6.25787428435554820454968357998, 6.67158334968123005796447784320, 6.83783779886561071593467447761, 7.58435567064855486686723796098, 8.011041589105212816329112188166

Graph of the $Z$-function along the critical line