Properties

Label 4-936e2-1.1-c1e2-0-27
Degree 44
Conductor 876096876096
Sign 1-1
Analytic cond. 55.860655.8606
Root an. cond. 2.733862.73386
Motivic weight 11
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank 11

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·7-s − 4·13-s − 12·19-s + 4·25-s + 8·31-s + 18·37-s + 12·43-s + 2·49-s + 8·61-s + 14·73-s − 8·79-s + 16·91-s − 10·97-s − 20·103-s − 18·109-s − 8·121-s + 127-s + 131-s + 48·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 3·169-s + ⋯
L(s)  = 1  − 1.51·7-s − 1.10·13-s − 2.75·19-s + 4/5·25-s + 1.43·31-s + 2.95·37-s + 1.82·43-s + 2/7·49-s + 1.02·61-s + 1.63·73-s − 0.900·79-s + 1.67·91-s − 1.01·97-s − 1.97·103-s − 1.72·109-s − 0.727·121-s + 0.0887·127-s + 0.0873·131-s + 4.16·133-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 3/13·169-s + ⋯

Functional equation

Λ(s)=(876096s/2ΓC(s)2L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 876096 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}
Λ(s)=(876096s/2ΓC(s+1/2)2L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 876096 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}

Invariants

Degree: 44
Conductor: 876096876096    =    26341322^{6} \cdot 3^{4} \cdot 13^{2}
Sign: 1-1
Analytic conductor: 55.860655.8606
Root analytic conductor: 2.733862.73386
Motivic weight: 11
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: 11
Selberg data: (4, 876096, ( :1/2,1/2), 1)(4,\ 876096,\ (\ :1/2, 1/2),\ -1)

Particular Values

L(1)L(1) == 00
L(12)L(\frac12) == 00
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppGal(Fp)\Gal(F_p)Fp(T)F_p(T)
bad2 1 1
3 1 1
13C2C_2 1+4T+pT2 1 + 4 T + p T^{2}
good5C22C_2^2 14T2+p2T4 1 - 4 T^{2} + p^{2} T^{4}
7C2C_2×\timesC2C_2 (1+pT2)(1+4T+pT2) ( 1 + p T^{2} )( 1 + 4 T + p T^{2} )
11C22C_2^2 1+8T2+p2T4 1 + 8 T^{2} + p^{2} T^{4}
17C2C_2 (14T+pT2)(1+4T+pT2) ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} )
19C2C_2×\timesC2C_2 (1+4T+pT2)(1+8T+pT2) ( 1 + 4 T + p T^{2} )( 1 + 8 T + p T^{2} )
23C22C_2^2 114T2+p2T4 1 - 14 T^{2} + p^{2} T^{4}
29C2C_2 (16T+pT2)(1+6T+pT2) ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} )
31C2C_2 (14T+pT2)2 ( 1 - 4 T + p T^{2} )^{2}
37C2C_2×\timesC2C_2 (110T+pT2)(18T+pT2) ( 1 - 10 T + p T^{2} )( 1 - 8 T + p T^{2} )
41C22C_2^2 152T2+p2T4 1 - 52 T^{2} + p^{2} T^{4}
43C2C_2×\timesC2C_2 (18T+pT2)(14T+pT2) ( 1 - 8 T + p T^{2} )( 1 - 4 T + p T^{2} )
47C22C_2^2 1+80T2+p2T4 1 + 80 T^{2} + p^{2} T^{4}
53C2C_2 (18T+pT2)(1+8T+pT2) ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} )
59C22C_2^2 1+8T2+p2T4 1 + 8 T^{2} + p^{2} T^{4}
61C2C_2×\timesC2C_2 (18T+pT2)(1+pT2) ( 1 - 8 T + p T^{2} )( 1 + p T^{2} )
67C2C_2 (14T+pT2)(1+4T+pT2) ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} )
71C22C_2^2 1+128T2+p2T4 1 + 128 T^{2} + p^{2} T^{4}
73C2C_2×\timesC2C_2 (110T+pT2)(14T+pT2) ( 1 - 10 T + p T^{2} )( 1 - 4 T + p T^{2} )
79C2C_2×\timesC2C_2 (14T+pT2)(1+12T+pT2) ( 1 - 4 T + p T^{2} )( 1 + 12 T + p T^{2} )
83C22C_2^2 1+56T2+p2T4 1 + 56 T^{2} + p^{2} T^{4}
89C22C_2^2 160T2+p2T4 1 - 60 T^{2} + p^{2} T^{4}
97C2C_2×\timesC2C_2 (12T+pT2)(1+12T+pT2) ( 1 - 2 T + p T^{2} )( 1 + 12 T + p T^{2} )
show more
show less
   L(s)=p j=14(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−8.011041589105212816329112188166, −7.58435567064855486686723796098, −6.83783779886561071593467447761, −6.67158334968123005796447784320, −6.25787428435554820454968357998, −5.95287424577545614572814364452, −5.24936749392889093682839921044, −4.63640353885541368604350705184, −4.13376904574689612252138819680, −3.98331010642415475247011050545, −2.86108699411148756398142603227, −2.68604415269591467528290082955, −2.21756293670217156757659842930, −0.933841790213200869561946347150, 0, 0.933841790213200869561946347150, 2.21756293670217156757659842930, 2.68604415269591467528290082955, 2.86108699411148756398142603227, 3.98331010642415475247011050545, 4.13376904574689612252138819680, 4.63640353885541368604350705184, 5.24936749392889093682839921044, 5.95287424577545614572814364452, 6.25787428435554820454968357998, 6.67158334968123005796447784320, 6.83783779886561071593467447761, 7.58435567064855486686723796098, 8.011041589105212816329112188166

Graph of the ZZ-function along the critical line