Properties

Label 2-30064-1.1-c1-0-9
Degree $2$
Conductor $30064$
Sign $-1$
Analytic cond. $240.062$
Root an. cond. $15.4939$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $3$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 3·5-s − 3·7-s + 9-s − 6·11-s − 6·13-s + 6·15-s − 3·17-s − 8·19-s + 6·21-s − 2·23-s + 4·25-s + 4·27-s − 9·29-s + 2·31-s + 12·33-s + 9·35-s − 8·37-s + 12·39-s − 4·41-s + 43-s − 3·45-s − 3·47-s + 2·49-s + 6·51-s − 9·53-s + 18·55-s + ⋯
L(s)  = 1  − 1.15·3-s − 1.34·5-s − 1.13·7-s + 1/3·9-s − 1.80·11-s − 1.66·13-s + 1.54·15-s − 0.727·17-s − 1.83·19-s + 1.30·21-s − 0.417·23-s + 4/5·25-s + 0.769·27-s − 1.67·29-s + 0.359·31-s + 2.08·33-s + 1.52·35-s − 1.31·37-s + 1.92·39-s − 0.624·41-s + 0.152·43-s − 0.447·45-s − 0.437·47-s + 2/7·49-s + 0.840·51-s − 1.23·53-s + 2.42·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 30064 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 30064 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(30064\)    =    \(2^{4} \cdot 1879\)
Sign: $-1$
Analytic conductor: \(240.062\)
Root analytic conductor: \(15.4939\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(3\)
Selberg data: \((2,\ 30064,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
1879 \( 1 + T \)
good3 \( 1 + 2 T + p T^{2} \)
5 \( 1 + 3 T + p T^{2} \)
7 \( 1 + 3 T + p T^{2} \)
11 \( 1 + 6 T + p T^{2} \)
13 \( 1 + 6 T + p T^{2} \)
17 \( 1 + 3 T + p T^{2} \)
19 \( 1 + 8 T + p T^{2} \)
23 \( 1 + 2 T + p T^{2} \)
29 \( 1 + 9 T + p T^{2} \)
31 \( 1 - 2 T + p T^{2} \)
37 \( 1 + 8 T + p T^{2} \)
41 \( 1 + 4 T + p T^{2} \)
43 \( 1 - T + p T^{2} \)
47 \( 1 + 3 T + p T^{2} \)
53 \( 1 + 9 T + p T^{2} \)
59 \( 1 + 8 T + p T^{2} \)
61 \( 1 - 6 T + p T^{2} \)
67 \( 1 - T + p T^{2} \)
71 \( 1 + 5 T + p T^{2} \)
73 \( 1 + 11 T + p T^{2} \)
79 \( 1 + 4 T + p T^{2} \)
83 \( 1 + 7 T + p T^{2} \)
89 \( 1 - 9 T + p T^{2} \)
97 \( 1 + 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.86966113094814, −15.59642688925967, −15.01777324235975, −14.62608308939919, −13.59392843432258, −12.96437709044100, −12.67061263990843, −12.25294656601051, −11.73838258064040, −11.00155245927683, −10.77942255826542, −10.13998467566540, −9.698082134149390, −8.772947488572741, −8.238554255806678, −7.608684996887939, −7.104925952872932, −6.597842723215102, −5.910195151979466, −5.282049768068779, −4.699876282598152, −4.232775554734428, −3.330310222054931, −2.707085497629219, −1.976628029882896, 0, 0, 0, 1.976628029882896, 2.707085497629219, 3.330310222054931, 4.232775554734428, 4.699876282598152, 5.282049768068779, 5.910195151979466, 6.597842723215102, 7.104925952872932, 7.608684996887939, 8.238554255806678, 8.772947488572741, 9.698082134149390, 10.13998467566540, 10.77942255826542, 11.00155245927683, 11.73838258064040, 12.25294656601051, 12.67061263990843, 12.96437709044100, 13.59392843432258, 14.62608308939919, 15.01777324235975, 15.59642688925967, 15.86966113094814

Graph of the $Z$-function along the critical line