Properties

Label 2-332010-1.1-c1-0-2
Degree $2$
Conductor $332010$
Sign $1$
Analytic cond. $2651.11$
Root an. cond. $51.4889$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 5-s + 7-s + 8-s + 10-s + 4·11-s − 2·13-s + 14-s + 16-s + 17-s − 4·19-s + 20-s + 4·22-s − 8·23-s + 25-s − 2·26-s + 28-s − 6·29-s − 31-s + 32-s + 34-s + 35-s − 2·37-s − 4·38-s + 40-s − 6·41-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.447·5-s + 0.377·7-s + 0.353·8-s + 0.316·10-s + 1.20·11-s − 0.554·13-s + 0.267·14-s + 1/4·16-s + 0.242·17-s − 0.917·19-s + 0.223·20-s + 0.852·22-s − 1.66·23-s + 1/5·25-s − 0.392·26-s + 0.188·28-s − 1.11·29-s − 0.179·31-s + 0.176·32-s + 0.171·34-s + 0.169·35-s − 0.328·37-s − 0.648·38-s + 0.158·40-s − 0.937·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 332010 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 332010 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(332010\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 17 \cdot 31\)
Sign: $1$
Analytic conductor: \(2651.11\)
Root analytic conductor: \(51.4889\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 332010,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.356354952\)
\(L(\frac12)\) \(\approx\) \(3.356354952\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 - T \)
7 \( 1 - T \)
17 \( 1 - T \)
31 \( 1 + T \)
good11 \( 1 - 4 T + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
23 \( 1 + 8 T + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 - 2 T + p T^{2} \)
59 \( 1 + 8 T + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 + 8 T + p T^{2} \)
71 \( 1 - 8 T + p T^{2} \)
73 \( 1 + 10 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 + 16 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 - 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.59002593026896, −12.02556036373247, −11.95370313763771, −11.28569099874544, −10.88718151287492, −10.32287792898240, −9.955481084237297, −9.425875076222978, −8.962440102587565, −8.473858963749353, −7.932054671660936, −7.354816646822239, −7.043506694345519, −6.340519893037189, −6.017787864980794, −5.655974264925660, −5.002806119512825, −4.400864243242397, −4.146777290521653, −3.556251072572242, −2.983923471229090, −2.267599116425896, −1.717219234791073, −1.508135304923061, −0.3849710781798285, 0.3849710781798285, 1.508135304923061, 1.717219234791073, 2.267599116425896, 2.983923471229090, 3.556251072572242, 4.146777290521653, 4.400864243242397, 5.002806119512825, 5.655974264925660, 6.017787864980794, 6.340519893037189, 7.043506694345519, 7.354816646822239, 7.932054671660936, 8.473858963749353, 8.962440102587565, 9.425875076222978, 9.955481084237297, 10.32287792898240, 10.88718151287492, 11.28569099874544, 11.95370313763771, 12.02556036373247, 12.59002593026896

Graph of the $Z$-function along the critical line