Properties

Label 2-19e2-1.1-c1-0-16
Degree $2$
Conductor $361$
Sign $-1$
Analytic cond. $2.88259$
Root an. cond. $1.69782$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s − 5-s + 3·7-s − 3·9-s − 5·11-s + 4·16-s − 7·17-s + 2·20-s − 4·23-s − 4·25-s − 6·28-s − 3·35-s + 6·36-s − 43-s + 10·44-s + 3·45-s + 13·47-s + 2·49-s + 5·55-s + 15·61-s − 9·63-s − 8·64-s + 14·68-s − 11·73-s − 15·77-s − 4·80-s + 9·81-s + ⋯
L(s)  = 1  − 4-s − 0.447·5-s + 1.13·7-s − 9-s − 1.50·11-s + 16-s − 1.69·17-s + 0.447·20-s − 0.834·23-s − 4/5·25-s − 1.13·28-s − 0.507·35-s + 36-s − 0.152·43-s + 1.50·44-s + 0.447·45-s + 1.89·47-s + 2/7·49-s + 0.674·55-s + 1.92·61-s − 1.13·63-s − 64-s + 1.69·68-s − 1.28·73-s − 1.70·77-s − 0.447·80-s + 81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 361 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 361 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(361\)    =    \(19^{2}\)
Sign: $-1$
Analytic conductor: \(2.88259\)
Root analytic conductor: \(1.69782\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 361,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad19 \( 1 \)
good2 \( 1 + p T^{2} \)
3 \( 1 + p T^{2} \)
5 \( 1 + T + p T^{2} \)
7 \( 1 - 3 T + p T^{2} \)
11 \( 1 + 5 T + p T^{2} \)
13 \( 1 + p T^{2} \)
17 \( 1 + 7 T + p T^{2} \)
23 \( 1 + 4 T + p T^{2} \)
29 \( 1 + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 + p T^{2} \)
41 \( 1 + p T^{2} \)
43 \( 1 + T + p T^{2} \)
47 \( 1 - 13 T + p T^{2} \)
53 \( 1 + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 - 15 T + p T^{2} \)
67 \( 1 + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 + 11 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 + 16 T + p T^{2} \)
89 \( 1 + p T^{2} \)
97 \( 1 + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.04192157513365594505715826533, −10.14137137498683452879063403529, −8.818740829912344599292769500918, −8.301202088179616535243949193699, −7.53951354613441402441563530018, −5.80534064056569741924876016031, −4.96494399417687847585027962398, −4.04609256039116080936481593666, −2.40706237497488198685499903779, 0, 2.40706237497488198685499903779, 4.04609256039116080936481593666, 4.96494399417687847585027962398, 5.80534064056569741924876016031, 7.53951354613441402441563530018, 8.301202088179616535243949193699, 8.818740829912344599292769500918, 10.14137137498683452879063403529, 11.04192157513365594505715826533

Graph of the $Z$-function along the critical line