Properties

Label 2-50575-1.1-c1-0-31
Degree $2$
Conductor $50575$
Sign $-1$
Analytic cond. $403.843$
Root an. cond. $20.0958$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 3-s + 2·4-s − 2·6-s + 7-s − 2·9-s + 3·11-s − 2·12-s + 13-s + 2·14-s − 4·16-s − 4·18-s − 21-s + 6·22-s − 6·23-s + 2·26-s + 5·27-s + 2·28-s + 5·29-s − 2·31-s − 8·32-s − 3·33-s − 4·36-s − 2·37-s − 39-s − 2·41-s − 2·42-s + ⋯
L(s)  = 1  + 1.41·2-s − 0.577·3-s + 4-s − 0.816·6-s + 0.377·7-s − 2/3·9-s + 0.904·11-s − 0.577·12-s + 0.277·13-s + 0.534·14-s − 16-s − 0.942·18-s − 0.218·21-s + 1.27·22-s − 1.25·23-s + 0.392·26-s + 0.962·27-s + 0.377·28-s + 0.928·29-s − 0.359·31-s − 1.41·32-s − 0.522·33-s − 2/3·36-s − 0.328·37-s − 0.160·39-s − 0.312·41-s − 0.308·42-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 50575 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 50575 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(50575\)    =    \(5^{2} \cdot 7 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(403.843\)
Root analytic conductor: \(20.0958\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 50575,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
7 \( 1 - T \)
17 \( 1 \)
good2 \( 1 - p T + p T^{2} \)
3 \( 1 + T + p T^{2} \)
11 \( 1 - 3 T + p T^{2} \)
13 \( 1 - T + p T^{2} \)
19 \( 1 + p T^{2} \)
23 \( 1 + 6 T + p T^{2} \)
29 \( 1 - 5 T + p T^{2} \)
31 \( 1 + 2 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 + 2 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 + 3 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 - 10 T + p T^{2} \)
61 \( 1 - 8 T + p T^{2} \)
67 \( 1 - 2 T + p T^{2} \)
71 \( 1 - 8 T + p T^{2} \)
73 \( 1 + 6 T + p T^{2} \)
79 \( 1 - 5 T + p T^{2} \)
83 \( 1 + 4 T + p T^{2} \)
89 \( 1 + p T^{2} \)
97 \( 1 + 7 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.64002564125645, −14.20978926514614, −13.81394253146794, −13.33426010054795, −12.67902887038101, −12.13225818568645, −11.80127670845848, −11.47035424197259, −10.93528669008964, −10.26341222699785, −9.693540103108074, −8.904963343182625, −8.491099265509478, −7.946341807422589, −6.913490484003947, −6.647273098803020, −6.069066533562253, −5.515894966802146, −5.144459889976130, −4.452661876647726, −3.893401299926782, −3.439176202902306, −2.616411801385783, −1.987692128314599, −1.031503631318047, 0, 1.031503631318047, 1.987692128314599, 2.616411801385783, 3.439176202902306, 3.893401299926782, 4.452661876647726, 5.144459889976130, 5.515894966802146, 6.069066533562253, 6.647273098803020, 6.913490484003947, 7.946341807422589, 8.491099265509478, 8.904963343182625, 9.693540103108074, 10.26341222699785, 10.93528669008964, 11.47035424197259, 11.80127670845848, 12.13225818568645, 12.67902887038101, 13.33426010054795, 13.81394253146794, 14.20978926514614, 14.64002564125645

Graph of the $Z$-function along the critical line