Properties

Label 2-855-1.1-c1-0-11
Degree $2$
Conductor $855$
Sign $1$
Analytic cond. $6.82720$
Root an. cond. $2.61289$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 4-s + 5-s − 2·7-s − 3·8-s + 10-s + 6·11-s − 2·14-s − 16-s + 6·17-s + 19-s − 20-s + 6·22-s + 8·23-s + 25-s + 2·28-s − 4·29-s + 5·32-s + 6·34-s − 2·35-s + 4·37-s + 38-s − 3·40-s − 2·43-s − 6·44-s + 8·46-s + 8·47-s + ⋯
L(s)  = 1  + 0.707·2-s − 1/2·4-s + 0.447·5-s − 0.755·7-s − 1.06·8-s + 0.316·10-s + 1.80·11-s − 0.534·14-s − 1/4·16-s + 1.45·17-s + 0.229·19-s − 0.223·20-s + 1.27·22-s + 1.66·23-s + 1/5·25-s + 0.377·28-s − 0.742·29-s + 0.883·32-s + 1.02·34-s − 0.338·35-s + 0.657·37-s + 0.162·38-s − 0.474·40-s − 0.304·43-s − 0.904·44-s + 1.17·46-s + 1.16·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 855 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 855 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(855\)    =    \(3^{2} \cdot 5 \cdot 19\)
Sign: $1$
Analytic conductor: \(6.82720\)
Root analytic conductor: \(2.61289\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 855,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.064522451\)
\(L(\frac12)\) \(\approx\) \(2.064522451\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 - T \)
19 \( 1 - T \)
good2 \( 1 - T + p T^{2} \)
7 \( 1 + 2 T + p T^{2} \)
11 \( 1 - 6 T + p T^{2} \)
13 \( 1 + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
23 \( 1 - 8 T + p T^{2} \)
29 \( 1 + 4 T + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 - 4 T + p T^{2} \)
41 \( 1 + p T^{2} \)
43 \( 1 + 2 T + p T^{2} \)
47 \( 1 - 8 T + p T^{2} \)
53 \( 1 + 2 T + p T^{2} \)
59 \( 1 + 12 T + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 + 8 T + p T^{2} \)
71 \( 1 + 16 T + p T^{2} \)
73 \( 1 - 14 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 + p T^{2} \)
89 \( 1 + p T^{2} \)
97 \( 1 + 12 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.913801051404549343095254605315, −9.336026064876748627175224561191, −8.836488963226532523388598253810, −7.44218328127442158412477604159, −6.43277558403273238107542389585, −5.81033642723526554045616411588, −4.81376783679940109514525317705, −3.73246630802271223857044732290, −3.06388291591923378327344798065, −1.15112547813740378682858966686, 1.15112547813740378682858966686, 3.06388291591923378327344798065, 3.73246630802271223857044732290, 4.81376783679940109514525317705, 5.81033642723526554045616411588, 6.43277558403273238107542389585, 7.44218328127442158412477604159, 8.836488963226532523388598253810, 9.336026064876748627175224561191, 9.913801051404549343095254605315

Graph of the $Z$-function along the critical line