Properties

Label 2-8784-1.1-c1-0-149
Degree $2$
Conductor $8784$
Sign $1$
Analytic cond. $70.1405$
Root an. cond. $8.37499$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 4·7-s − 6·11-s − 6·13-s + 3·17-s + 6·19-s − 7·23-s − 4·25-s − 6·31-s + 4·35-s − 3·37-s − 7·43-s − 6·47-s + 9·49-s − 10·53-s + 6·55-s − 6·59-s − 61-s + 6·65-s − 4·67-s − 7·71-s + 3·73-s + 24·77-s + 2·79-s + 15·83-s − 3·85-s − 9·89-s + ⋯
L(s)  = 1  − 0.447·5-s − 1.51·7-s − 1.80·11-s − 1.66·13-s + 0.727·17-s + 1.37·19-s − 1.45·23-s − 4/5·25-s − 1.07·31-s + 0.676·35-s − 0.493·37-s − 1.06·43-s − 0.875·47-s + 9/7·49-s − 1.37·53-s + 0.809·55-s − 0.781·59-s − 0.128·61-s + 0.744·65-s − 0.488·67-s − 0.830·71-s + 0.351·73-s + 2.73·77-s + 0.225·79-s + 1.64·83-s − 0.325·85-s − 0.953·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8784 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8784 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8784\)    =    \(2^{4} \cdot 3^{2} \cdot 61\)
Sign: $1$
Analytic conductor: \(70.1405\)
Root analytic conductor: \(8.37499\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 8784,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
61 \( 1 + T \)
good5 \( 1 + T + p T^{2} \)
7 \( 1 + 4 T + p T^{2} \)
11 \( 1 + 6 T + p T^{2} \)
13 \( 1 + 6 T + p T^{2} \)
17 \( 1 - 3 T + p T^{2} \)
19 \( 1 - 6 T + p T^{2} \)
23 \( 1 + 7 T + p T^{2} \)
29 \( 1 + p T^{2} \)
31 \( 1 + 6 T + p T^{2} \)
37 \( 1 + 3 T + p T^{2} \)
41 \( 1 + p T^{2} \)
43 \( 1 + 7 T + p T^{2} \)
47 \( 1 + 6 T + p T^{2} \)
53 \( 1 + 10 T + p T^{2} \)
59 \( 1 + 6 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 + 7 T + p T^{2} \)
73 \( 1 - 3 T + p T^{2} \)
79 \( 1 - 2 T + p T^{2} \)
83 \( 1 - 15 T + p T^{2} \)
89 \( 1 + 9 T + p T^{2} \)
97 \( 1 + 13 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.21793996264369532199224244864, −6.44565603128433895413307230860, −5.45875951406284077765929146067, −5.26175676518936530355797830268, −4.17337230719408802639730485316, −3.20648596077886558956405360617, −2.92238247327108965304336587330, −1.88712662103680512819280047071, 0, 0, 1.88712662103680512819280047071, 2.92238247327108965304336587330, 3.20648596077886558956405360617, 4.17337230719408802639730485316, 5.26175676518936530355797830268, 5.45875951406284077765929146067, 6.44565603128433895413307230860, 7.21793996264369532199224244864

Graph of the $Z$-function along the critical line