Properties

Label 2-10-1.1-c25-0-3
Degree $2$
Conductor $10$
Sign $1$
Analytic cond. $39.5996$
Root an. cond. $6.29282$
Motivic weight $25$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.09e3·2-s + 6.18e5·3-s + 1.67e7·4-s − 2.44e8·5-s + 2.53e9·6-s + 4.78e10·7-s + 6.87e10·8-s − 4.64e11·9-s − 1.00e12·10-s + 3.58e11·11-s + 1.03e13·12-s + 7.76e13·13-s + 1.96e14·14-s − 1.50e14·15-s + 2.81e14·16-s + 1.50e15·17-s − 1.90e15·18-s + 4.83e15·19-s − 4.09e15·20-s + 2.96e16·21-s + 1.46e15·22-s + 2.59e16·23-s + 4.24e16·24-s + 5.96e16·25-s + 3.18e17·26-s − 8.11e17·27-s + 8.03e17·28-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.671·3-s + 0.5·4-s − 0.447·5-s + 0.475·6-s + 1.30·7-s + 0.353·8-s − 0.548·9-s − 0.316·10-s + 0.0344·11-s + 0.335·12-s + 0.924·13-s + 0.924·14-s − 0.300·15-s + 0.250·16-s + 0.627·17-s − 0.387·18-s + 0.501·19-s − 0.223·20-s + 0.878·21-s + 0.0243·22-s + 0.246·23-s + 0.237·24-s + 0.199·25-s + 0.653·26-s − 1.04·27-s + 0.653·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(26-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s+25/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(10\)    =    \(2 \cdot 5\)
Sign: $1$
Analytic conductor: \(39.5996\)
Root analytic conductor: \(6.29282\)
Motivic weight: \(25\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 10,\ (\ :25/2),\ 1)\)

Particular Values

\(L(13)\) \(\approx\) \(4.518807412\)
\(L(\frac12)\) \(\approx\) \(4.518807412\)
\(L(\frac{27}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 4.09e3T \)
5 \( 1 + 2.44e8T \)
good3 \( 1 - 6.18e5T + 8.47e11T^{2} \)
7 \( 1 - 4.78e10T + 1.34e21T^{2} \)
11 \( 1 - 3.58e11T + 1.08e26T^{2} \)
13 \( 1 - 7.76e13T + 7.05e27T^{2} \)
17 \( 1 - 1.50e15T + 5.77e30T^{2} \)
19 \( 1 - 4.83e15T + 9.30e31T^{2} \)
23 \( 1 - 2.59e16T + 1.10e34T^{2} \)
29 \( 1 - 9.30e17T + 3.63e36T^{2} \)
31 \( 1 - 3.10e18T + 1.92e37T^{2} \)
37 \( 1 + 4.54e19T + 1.60e39T^{2} \)
41 \( 1 - 1.02e20T + 2.08e40T^{2} \)
43 \( 1 - 4.58e20T + 6.86e40T^{2} \)
47 \( 1 - 1.51e21T + 6.34e41T^{2} \)
53 \( 1 + 2.00e21T + 1.27e43T^{2} \)
59 \( 1 - 2.00e22T + 1.86e44T^{2} \)
61 \( 1 + 2.40e22T + 4.29e44T^{2} \)
67 \( 1 + 5.68e22T + 4.48e45T^{2} \)
71 \( 1 - 2.06e22T + 1.91e46T^{2} \)
73 \( 1 + 3.20e23T + 3.82e46T^{2} \)
79 \( 1 + 4.28e23T + 2.75e47T^{2} \)
83 \( 1 + 1.11e24T + 9.48e47T^{2} \)
89 \( 1 - 1.75e24T + 5.42e48T^{2} \)
97 \( 1 + 1.28e25T + 4.66e49T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.56420477160205827152756985243, −13.79238779399364083481388158639, −12.00045798559841793275080789727, −10.90507687333009033194744043577, −8.674934187930878223447820595810, −7.59939937718354106091567344807, −5.61075416557292730241010202054, −4.13850937697760931376022353106, −2.79622925444236206197409075218, −1.23991409486712841662795472706, 1.23991409486712841662795472706, 2.79622925444236206197409075218, 4.13850937697760931376022353106, 5.61075416557292730241010202054, 7.59939937718354106091567344807, 8.674934187930878223447820595810, 10.90507687333009033194744043577, 12.00045798559841793275080789727, 13.79238779399364083481388158639, 14.56420477160205827152756985243

Graph of the $Z$-function along the critical line