L(s) = 1 | + (1.09 − 1.34i)3-s − 3.18·5-s + (−0.710 − 2.54i)7-s + (−0.619 − 2.93i)9-s − 3.18·11-s + (2.85 + 4.93i)13-s + (−3.47 + 4.28i)15-s + (−0.760 − 1.31i)17-s + (0.641 − 1.11i)19-s + (−4.20 − 1.82i)21-s − 2.23·23-s + 5.12·25-s + (−4.62 − 2.36i)27-s + (−3.54 + 6.13i)29-s + (−4.71 + 8.15i)31-s + ⋯ |
L(s) = 1 | + (0.629 − 0.776i)3-s − 1.42·5-s + (−0.268 − 0.963i)7-s + (−0.206 − 0.978i)9-s − 0.959·11-s + (0.790 + 1.36i)13-s + (−0.896 + 1.10i)15-s + (−0.184 − 0.319i)17-s + (0.147 − 0.254i)19-s + (−0.917 − 0.398i)21-s − 0.466·23-s + 1.02·25-s + (−0.890 − 0.455i)27-s + (−0.657 + 1.13i)29-s + (−0.846 + 1.46i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.778 - 0.627i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.778 - 0.627i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.1923301533\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1923301533\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.09 + 1.34i)T \) |
| 7 | \( 1 + (0.710 + 2.54i)T \) |
good | 5 | \( 1 + 3.18T + 5T^{2} \) |
| 11 | \( 1 + 3.18T + 11T^{2} \) |
| 13 | \( 1 + (-2.85 - 4.93i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (0.760 + 1.31i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.641 + 1.11i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + 2.23T + 23T^{2} \) |
| 29 | \( 1 + (3.54 - 6.13i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (4.71 - 8.15i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-0.5 + 0.866i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (2.80 + 4.85i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (3.41 - 5.91i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (2.91 + 5.04i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-1.02 - 1.78i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (0.562 - 0.974i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (1.56 + 2.70i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-5.48 + 9.49i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 8.69T + 71T^{2} \) |
| 73 | \( 1 + (2.48 + 4.30i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (2.06 + 3.58i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-4.03 + 6.98i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (-0.112 + 0.195i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-7.42 + 12.8i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.156634918457299439747391616287, −8.546365467497466462437341153377, −7.61029259814213742664079669601, −7.19819250737877158700857456926, −6.43492667765884016096970498390, −4.86371967576363537346494634352, −3.80427775696691083603529646305, −3.24469110894255092947684377146, −1.63760455182203887238887535590, −0.07882457842957496971565554576,
2.42806156373141011889408274115, 3.38129474673033735735346910015, 4.05919675343856263197302591918, 5.24055674252385429145576485966, 5.97412594588658637327676817615, 7.62062361260721963471603024171, 8.054584434540786729480482717287, 8.603446330864757186610601066805, 9.650248812943599633622930048733, 10.42066943919232051246483867101