Properties

Label 2-1008-63.16-c1-0-45
Degree $2$
Conductor $1008$
Sign $-0.778 - 0.627i$
Analytic cond. $8.04892$
Root an. cond. $2.83706$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.09 − 1.34i)3-s − 3.18·5-s + (−0.710 − 2.54i)7-s + (−0.619 − 2.93i)9-s − 3.18·11-s + (2.85 + 4.93i)13-s + (−3.47 + 4.28i)15-s + (−0.760 − 1.31i)17-s + (0.641 − 1.11i)19-s + (−4.20 − 1.82i)21-s − 2.23·23-s + 5.12·25-s + (−4.62 − 2.36i)27-s + (−3.54 + 6.13i)29-s + (−4.71 + 8.15i)31-s + ⋯
L(s)  = 1  + (0.629 − 0.776i)3-s − 1.42·5-s + (−0.268 − 0.963i)7-s + (−0.206 − 0.978i)9-s − 0.959·11-s + (0.790 + 1.36i)13-s + (−0.896 + 1.10i)15-s + (−0.184 − 0.319i)17-s + (0.147 − 0.254i)19-s + (−0.917 − 0.398i)21-s − 0.466·23-s + 1.02·25-s + (−0.890 − 0.455i)27-s + (−0.657 + 1.13i)29-s + (−0.846 + 1.46i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.778 - 0.627i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.778 - 0.627i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1008\)    =    \(2^{4} \cdot 3^{2} \cdot 7\)
Sign: $-0.778 - 0.627i$
Analytic conductor: \(8.04892\)
Root analytic conductor: \(2.83706\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1008} (961, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1008,\ (\ :1/2),\ -0.778 - 0.627i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.1923301533\)
\(L(\frac12)\) \(\approx\) \(0.1923301533\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (-1.09 + 1.34i)T \)
7 \( 1 + (0.710 + 2.54i)T \)
good5 \( 1 + 3.18T + 5T^{2} \)
11 \( 1 + 3.18T + 11T^{2} \)
13 \( 1 + (-2.85 - 4.93i)T + (-6.5 + 11.2i)T^{2} \)
17 \( 1 + (0.760 + 1.31i)T + (-8.5 + 14.7i)T^{2} \)
19 \( 1 + (-0.641 + 1.11i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + 2.23T + 23T^{2} \)
29 \( 1 + (3.54 - 6.13i)T + (-14.5 - 25.1i)T^{2} \)
31 \( 1 + (4.71 - 8.15i)T + (-15.5 - 26.8i)T^{2} \)
37 \( 1 + (-0.5 + 0.866i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 + (2.80 + 4.85i)T + (-20.5 + 35.5i)T^{2} \)
43 \( 1 + (3.41 - 5.91i)T + (-21.5 - 37.2i)T^{2} \)
47 \( 1 + (2.91 + 5.04i)T + (-23.5 + 40.7i)T^{2} \)
53 \( 1 + (-1.02 - 1.78i)T + (-26.5 + 45.8i)T^{2} \)
59 \( 1 + (0.562 - 0.974i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (1.56 + 2.70i)T + (-30.5 + 52.8i)T^{2} \)
67 \( 1 + (-5.48 + 9.49i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + 8.69T + 71T^{2} \)
73 \( 1 + (2.48 + 4.30i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 + (2.06 + 3.58i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 + (-4.03 + 6.98i)T + (-41.5 - 71.8i)T^{2} \)
89 \( 1 + (-0.112 + 0.195i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + (-7.42 + 12.8i)T + (-48.5 - 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.156634918457299439747391616287, −8.546365467497466462437341153377, −7.61029259814213742664079669601, −7.19819250737877158700857456926, −6.43492667765884016096970498390, −4.86371967576363537346494634352, −3.80427775696691083603529646305, −3.24469110894255092947684377146, −1.63760455182203887238887535590, −0.07882457842957496971565554576, 2.42806156373141011889408274115, 3.38129474673033735735346910015, 4.05919675343856263197302591918, 5.24055674252385429145576485966, 5.97412594588658637327676817615, 7.62062361260721963471603024171, 8.054584434540786729480482717287, 8.603446330864757186610601066805, 9.650248812943599633622930048733, 10.42066943919232051246483867101

Graph of the $Z$-function along the critical line