L(s) = 1 | + (−0.119 − 0.207i)2-s + (0.851 − 1.47i)3-s + (0.971 − 1.68i)4-s + (0.5 + 0.866i)5-s − 0.407·6-s + (0.663 + 2.56i)7-s − 0.944·8-s + (0.0500 + 0.0866i)9-s + (0.119 − 0.207i)10-s + (−2.59 + 4.49i)11-s + (−1.65 − 2.86i)12-s + 6.25·13-s + (0.451 − 0.444i)14-s + 1.70·15-s + (−1.82 − 3.16i)16-s + (2.78 − 4.82i)17-s + ⋯ |
L(s) = 1 | + (−0.0847 − 0.146i)2-s + (0.491 − 0.851i)3-s + (0.485 − 0.841i)4-s + (0.223 + 0.387i)5-s − 0.166·6-s + (0.250 + 0.968i)7-s − 0.333·8-s + (0.0166 + 0.0288i)9-s + (0.0378 − 0.0656i)10-s + (−0.783 + 1.35i)11-s + (−0.477 − 0.827i)12-s + 1.73·13-s + (0.120 − 0.118i)14-s + 0.439·15-s + (−0.457 − 0.792i)16-s + (0.675 − 1.17i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1085 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.654 + 0.755i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1085 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.654 + 0.755i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.302066635\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.302066635\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-0.5 - 0.866i)T \) |
| 7 | \( 1 + (-0.663 - 2.56i)T \) |
| 31 | \( 1 + (0.5 - 0.866i)T \) |
good | 2 | \( 1 + (0.119 + 0.207i)T + (-1 + 1.73i)T^{2} \) |
| 3 | \( 1 + (-0.851 + 1.47i)T + (-1.5 - 2.59i)T^{2} \) |
| 11 | \( 1 + (2.59 - 4.49i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 6.25T + 13T^{2} \) |
| 17 | \( 1 + (-2.78 + 4.82i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (3.55 + 6.16i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.80 - 3.12i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 8.27T + 29T^{2} \) |
| 37 | \( 1 + (1.69 + 2.93i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 10.1T + 41T^{2} \) |
| 43 | \( 1 + 10.2T + 43T^{2} \) |
| 47 | \( 1 + (2.05 + 3.55i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-2.11 + 3.65i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (0.241 - 0.417i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (0.826 + 1.43i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (1.65 - 2.87i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 6.58T + 71T^{2} \) |
| 73 | \( 1 + (6.98 - 12.0i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (2.16 + 3.74i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 12.1T + 83T^{2} \) |
| 89 | \( 1 + (-7.76 - 13.4i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 7.50T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.763383229471189555757457336015, −8.930844497661298796362213938235, −8.109068593154620855821627062594, −7.07601918621622116190097252075, −6.63152665175098512919097236458, −5.53042812730571100246846596035, −4.79178278591383429859522406228, −2.85277860786893876484872093914, −2.30037188897159991179473991265, −1.28876574392308449197352412211,
1.30013801002981638521463637695, 3.10534681251083147781926854416, 3.69678676994011386166136544826, 4.41263056398424120598145865103, 5.95487307193186248339640350755, 6.46013362950750547240694753443, 7.955105922087554544997236777546, 8.341152250061241025586137363147, 8.809264141427991738047625631965, 10.28362917733399237591155463593