L(s) = 1 | − 2i·2-s + 6.82i·3-s − 4·4-s + (−8.37 − 7.40i)5-s + 13.6·6-s − 13.6i·7-s + 8i·8-s − 19.5·9-s + (−14.8 + 16.7i)10-s − 11·11-s − 27.2i·12-s − 66.9i·13-s − 27.2·14-s + (50.5 − 57.1i)15-s + 16·16-s − 136. i·17-s + ⋯ |
L(s) = 1 | − 0.707i·2-s + 1.31i·3-s − 0.5·4-s + (−0.749 − 0.662i)5-s + 0.928·6-s − 0.736i·7-s + 0.353i·8-s − 0.723·9-s + (−0.468 + 0.529i)10-s − 0.301·11-s − 0.656i·12-s − 1.42i·13-s − 0.520·14-s + (0.869 − 0.983i)15-s + 0.250·16-s − 1.95i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 110 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.662 + 0.749i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 110 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.662 + 0.749i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.301836 - 0.669950i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.301836 - 0.669950i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + 2iT \) |
| 5 | \( 1 + (8.37 + 7.40i)T \) |
| 11 | \( 1 + 11T \) |
good | 3 | \( 1 - 6.82iT - 27T^{2} \) |
| 7 | \( 1 + 13.6iT - 343T^{2} \) |
| 13 | \( 1 + 66.9iT - 2.19e3T^{2} \) |
| 17 | \( 1 + 136. iT - 4.91e3T^{2} \) |
| 19 | \( 1 + 126.T + 6.85e3T^{2} \) |
| 23 | \( 1 - 62.5iT - 1.21e4T^{2} \) |
| 29 | \( 1 + 144.T + 2.43e4T^{2} \) |
| 31 | \( 1 - 229.T + 2.97e4T^{2} \) |
| 37 | \( 1 + 6.56iT - 5.06e4T^{2} \) |
| 41 | \( 1 + 276.T + 6.89e4T^{2} \) |
| 43 | \( 1 + 233. iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 381. iT - 1.03e5T^{2} \) |
| 53 | \( 1 + 182. iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 111.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 116.T + 2.26e5T^{2} \) |
| 67 | \( 1 + 480. iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 602.T + 3.57e5T^{2} \) |
| 73 | \( 1 - 622. iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 768.T + 4.93e5T^{2} \) |
| 83 | \( 1 + 953. iT - 5.71e5T^{2} \) |
| 89 | \( 1 - 757.T + 7.04e5T^{2} \) |
| 97 | \( 1 + 1.11e3iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.72226596640337241352028424867, −11.51189308958403259151014210833, −10.62888604118241817271227654951, −9.837154319220675796215232379867, −8.750746299560332971525630213845, −7.56006346583797721513148257808, −5.20231228329217200282836601158, −4.36417644245579532387535135971, −3.22392619478303466255590899575, −0.39742227369925742370582013549,
2.08353745027255629824845475999, 4.17055308184002242806594899116, 6.22606896849344642622255523480, 6.73523821168346963236774683911, 7.997941715485798357060330942670, 8.672266589184963061986179000429, 10.49858648181880787506225399030, 11.81509576950247482707799403539, 12.58293138604942079184315460737, 13.53319111451302412198105569292