L(s) = 1 | − 2i·2-s + 6.82i·3-s − 4·4-s + (−8.37 − 7.40i)5-s + 13.6·6-s − 13.6i·7-s + 8i·8-s − 19.5·9-s + (−14.8 + 16.7i)10-s − 11·11-s − 27.2i·12-s − 66.9i·13-s − 27.2·14-s + (50.5 − 57.1i)15-s + 16·16-s − 136. i·17-s + ⋯ |
L(s) = 1 | − 0.707i·2-s + 1.31i·3-s − 0.5·4-s + (−0.749 − 0.662i)5-s + 0.928·6-s − 0.736i·7-s + 0.353i·8-s − 0.723·9-s + (−0.468 + 0.529i)10-s − 0.301·11-s − 0.656i·12-s − 1.42i·13-s − 0.520·14-s + (0.869 − 0.983i)15-s + 0.250·16-s − 1.95i·17-s + ⋯ |
Λ(s)=(=(110s/2ΓC(s)L(s)(−0.662+0.749i)Λ(4−s)
Λ(s)=(=(110s/2ΓC(s+3/2)L(s)(−0.662+0.749i)Λ(1−s)
Degree: |
2 |
Conductor: |
110
= 2⋅5⋅11
|
Sign: |
−0.662+0.749i
|
Analytic conductor: |
6.49021 |
Root analytic conductor: |
2.54758 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ110(89,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 110, ( :3/2), −0.662+0.749i)
|
Particular Values
L(2) |
≈ |
0.301836−0.669950i |
L(21) |
≈ |
0.301836−0.669950i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+2iT |
| 5 | 1+(8.37+7.40i)T |
| 11 | 1+11T |
good | 3 | 1−6.82iT−27T2 |
| 7 | 1+13.6iT−343T2 |
| 13 | 1+66.9iT−2.19e3T2 |
| 17 | 1+136.iT−4.91e3T2 |
| 19 | 1+126.T+6.85e3T2 |
| 23 | 1−62.5iT−1.21e4T2 |
| 29 | 1+144.T+2.43e4T2 |
| 31 | 1−229.T+2.97e4T2 |
| 37 | 1+6.56iT−5.06e4T2 |
| 41 | 1+276.T+6.89e4T2 |
| 43 | 1+233.iT−7.95e4T2 |
| 47 | 1−381.iT−1.03e5T2 |
| 53 | 1+182.iT−1.48e5T2 |
| 59 | 1+111.T+2.05e5T2 |
| 61 | 1−116.T+2.26e5T2 |
| 67 | 1+480.iT−3.00e5T2 |
| 71 | 1+602.T+3.57e5T2 |
| 73 | 1−622.iT−3.89e5T2 |
| 79 | 1−768.T+4.93e5T2 |
| 83 | 1+953.iT−5.71e5T2 |
| 89 | 1−757.T+7.04e5T2 |
| 97 | 1+1.11e3iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.72226596640337241352028424867, −11.51189308958403259151014210833, −10.62888604118241817271227654951, −9.837154319220675796215232379867, −8.750746299560332971525630213845, −7.56006346583797721513148257808, −5.20231228329217200282836601158, −4.36417644245579532387535135971, −3.22392619478303466255590899575, −0.39742227369925742370582013549,
2.08353745027255629824845475999, 4.17055308184002242806594899116, 6.22606896849344642622255523480, 6.73523821168346963236774683911, 7.997941715485798357060330942670, 8.672266589184963061986179000429, 10.49858648181880787506225399030, 11.81509576950247482707799403539, 12.58293138604942079184315460737, 13.53319111451302412198105569292