L(s) = 1 | + (0.954 − 2.93i)3-s + (−0.787 − 2.42i)7-s + (−5.29 − 3.85i)9-s + (2.91 + 1.57i)11-s + (−3.13 − 2.27i)13-s + (5.39 − 3.92i)17-s + (−0.918 + 2.82i)19-s − 7.87·21-s − 2.50·23-s + (−8.87 + 6.44i)27-s + (−1.00 − 3.08i)29-s + (−3.01 − 2.18i)31-s + (7.41 − 7.07i)33-s + (−0.630 − 1.94i)37-s + (−9.67 + 7.02i)39-s + ⋯ |
L(s) = 1 | + (0.551 − 1.69i)3-s + (−0.297 − 0.916i)7-s + (−1.76 − 1.28i)9-s + (0.880 + 0.474i)11-s + (−0.868 − 0.630i)13-s + (1.30 − 0.951i)17-s + (−0.210 + 0.648i)19-s − 1.71·21-s − 0.521·23-s + (−1.70 + 1.24i)27-s + (−0.185 − 0.571i)29-s + (−0.541 − 0.393i)31-s + (1.29 − 1.23i)33-s + (−0.103 − 0.319i)37-s + (−1.54 + 1.12i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.987 + 0.156i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1100 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.987 + 0.156i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.587130057\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.587130057\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 11 | \( 1 + (-2.91 - 1.57i)T \) |
good | 3 | \( 1 + (-0.954 + 2.93i)T + (-2.42 - 1.76i)T^{2} \) |
| 7 | \( 1 + (0.787 + 2.42i)T + (-5.66 + 4.11i)T^{2} \) |
| 13 | \( 1 + (3.13 + 2.27i)T + (4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (-5.39 + 3.92i)T + (5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (0.918 - 2.82i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 + 2.50T + 23T^{2} \) |
| 29 | \( 1 + (1.00 + 3.08i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (3.01 + 2.18i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (0.630 + 1.94i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (3.15 - 9.70i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 + 6.30T + 43T^{2} \) |
| 47 | \( 1 + (0.894 - 2.75i)T + (-38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (-7.36 - 5.35i)T + (16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (2.44 + 7.52i)T + (-47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (-5.03 + 3.65i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 - 7.40T + 67T^{2} \) |
| 71 | \( 1 + (-5.48 + 3.98i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (-4.28 - 13.1i)T + (-59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (-2.17 - 1.57i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (-2.08 + 1.51i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 - 2.81T + 89T^{2} \) |
| 97 | \( 1 + (5.31 + 3.85i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.574703445641296651314989779888, −8.265189751690257269964055731632, −7.70030053797639874606434592799, −7.10173174228256397135697120567, −6.42787007125683610233051832749, −5.37184577149157435594411052852, −3.89192705115544463894265134191, −2.92048416757130542480752107005, −1.75573697656360834220703187259, −0.64921350695099055962329605544,
2.17491140341382675264651152013, 3.35246615918605315756715644897, 3.92911803529490097884212909734, 5.06637385098441315245197436912, 5.68726348424750505210417909062, 6.84399854214729492952180096294, 8.189842135971418573514465817143, 8.878840203466239108361000426536, 9.357552634994354402188624761357, 10.11152427532529935858780139844