Properties

Label 16-1100e8-1.1-c5e8-0-1
Degree $16$
Conductor $2.144\times 10^{24}$
Sign $1$
Analytic cond. $9.38481\times 10^{17}$
Root an. cond. $13.2824$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 27·3-s + 95·7-s − 419·9-s + 968·11-s + 294·13-s + 515·17-s − 354·19-s + 2.56e3·21-s + 3.07e3·23-s − 1.72e4·27-s + 2.74e3·29-s + 3.76e3·31-s + 2.61e4·33-s + 9.25e3·37-s + 7.93e3·39-s + 8.75e3·41-s + 1.52e4·43-s + 8.51e3·47-s − 4.90e4·49-s + 1.39e4·51-s + 3.04e4·53-s − 9.55e3·57-s + 2.04e4·59-s + 1.05e4·61-s − 3.98e4·63-s − 616·67-s + 8.29e4·69-s + ⋯
L(s)  = 1  + 1.73·3-s + 0.732·7-s − 1.72·9-s + 2.41·11-s + 0.482·13-s + 0.432·17-s − 0.224·19-s + 1.26·21-s + 1.21·23-s − 4.54·27-s + 0.605·29-s + 0.704·31-s + 4.17·33-s + 1.11·37-s + 0.835·39-s + 0.813·41-s + 1.26·43-s + 0.562·47-s − 2.91·49-s + 0.748·51-s + 1.49·53-s − 0.389·57-s + 0.762·59-s + 0.361·61-s − 1.26·63-s − 0.0167·67-s + 2.09·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 5^{16} \cdot 11^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(6-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 5^{16} \cdot 11^{8}\right)^{s/2} \, \Gamma_{\C}(s+5/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(2^{16} \cdot 5^{16} \cdot 11^{8}\)
Sign: $1$
Analytic conductor: \(9.38481\times 10^{17}\)
Root analytic conductor: \(13.2824\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 2^{16} \cdot 5^{16} \cdot 11^{8} ,\ ( \ : [5/2]^{8} ),\ 1 )\)

Particular Values

\(L(3)\) \(\approx\) \(47.02327057\)
\(L(\frac12)\) \(\approx\) \(47.02327057\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
11 \( ( 1 - p^{2} T )^{8} \)
good3 \( 1 - p^{3} T + 1148 T^{2} - 25082 T^{3} + 218948 p T^{4} - 12328543 T^{5} + 85491041 p T^{6} - 450348068 p^{2} T^{7} + 2675536180 p^{3} T^{8} - 450348068 p^{7} T^{9} + 85491041 p^{11} T^{10} - 12328543 p^{15} T^{11} + 218948 p^{21} T^{12} - 25082 p^{25} T^{13} + 1148 p^{30} T^{14} - p^{38} T^{15} + p^{40} T^{16} \)
7 \( 1 - 95 T + 58070 T^{2} - 4990750 T^{3} + 1963202942 T^{4} - 131770772635 T^{5} + 45344925083691 T^{6} - 2588052561885180 T^{7} + 119012249052757168 p T^{8} - 2588052561885180 p^{5} T^{9} + 45344925083691 p^{10} T^{10} - 131770772635 p^{15} T^{11} + 1963202942 p^{20} T^{12} - 4990750 p^{25} T^{13} + 58070 p^{30} T^{14} - 95 p^{35} T^{15} + p^{40} T^{16} \)
13 \( 1 - 294 T + 1646986 T^{2} - 299202128 T^{3} + 1300913544220 T^{4} - 131062317794990 T^{5} + 679120853748309572 T^{6} - 32873792682418053086 T^{7} + \)\(27\!\cdots\!09\)\( T^{8} - 32873792682418053086 p^{5} T^{9} + 679120853748309572 p^{10} T^{10} - 131062317794990 p^{15} T^{11} + 1300913544220 p^{20} T^{12} - 299202128 p^{25} T^{13} + 1646986 p^{30} T^{14} - 294 p^{35} T^{15} + p^{40} T^{16} \)
17 \( 1 - 515 T + 8070674 T^{2} - 3378374400 T^{3} + 30803153604746 T^{4} - 10383474743296645 T^{5} + 73615915722511852347 T^{6} - \)\(20\!\cdots\!60\)\( T^{7} + \)\(12\!\cdots\!20\)\( T^{8} - \)\(20\!\cdots\!60\)\( p^{5} T^{9} + 73615915722511852347 p^{10} T^{10} - 10383474743296645 p^{15} T^{11} + 30803153604746 p^{20} T^{12} - 3378374400 p^{25} T^{13} + 8070674 p^{30} T^{14} - 515 p^{35} T^{15} + p^{40} T^{16} \)
19 \( 1 + 354 T + 8500786 T^{2} + 16451228 T^{3} + 31452634933204 T^{4} - 27251998693430050 T^{5} + 62676039577996743348 T^{6} - \)\(81\!\cdots\!46\)\( p T^{7} + \)\(10\!\cdots\!33\)\( T^{8} - \)\(81\!\cdots\!46\)\( p^{6} T^{9} + 62676039577996743348 p^{10} T^{10} - 27251998693430050 p^{15} T^{11} + 31452634933204 p^{20} T^{12} + 16451228 p^{25} T^{13} + 8500786 p^{30} T^{14} + 354 p^{35} T^{15} + p^{40} T^{16} \)
23 \( 1 - 3073 T + 32764513 T^{2} - 70606306181 T^{3} + 485395074193054 T^{4} - 794572568281071813 T^{5} + \)\(46\!\cdots\!34\)\( T^{6} - \)\(63\!\cdots\!92\)\( T^{7} + \)\(34\!\cdots\!35\)\( T^{8} - \)\(63\!\cdots\!92\)\( p^{5} T^{9} + \)\(46\!\cdots\!34\)\( p^{10} T^{10} - 794572568281071813 p^{15} T^{11} + 485395074193054 p^{20} T^{12} - 70606306181 p^{25} T^{13} + 32764513 p^{30} T^{14} - 3073 p^{35} T^{15} + p^{40} T^{16} \)
29 \( 1 - 2743 T + 106386611 T^{2} - 159354195085 T^{3} + 5305993204724862 T^{4} - 4472618667049547707 T^{5} + \)\(17\!\cdots\!36\)\( T^{6} - \)\(10\!\cdots\!10\)\( T^{7} + \)\(42\!\cdots\!61\)\( T^{8} - \)\(10\!\cdots\!10\)\( p^{5} T^{9} + \)\(17\!\cdots\!36\)\( p^{10} T^{10} - 4472618667049547707 p^{15} T^{11} + 5305993204724862 p^{20} T^{12} - 159354195085 p^{25} T^{13} + 106386611 p^{30} T^{14} - 2743 p^{35} T^{15} + p^{40} T^{16} \)
31 \( 1 - 3768 T + 124773304 T^{2} - 509812485728 T^{3} + 8212940005839430 T^{4} - 31651081416180785816 T^{5} + \)\(36\!\cdots\!96\)\( T^{6} - \)\(12\!\cdots\!64\)\( T^{7} + \)\(12\!\cdots\!63\)\( T^{8} - \)\(12\!\cdots\!64\)\( p^{5} T^{9} + \)\(36\!\cdots\!96\)\( p^{10} T^{10} - 31651081416180785816 p^{15} T^{11} + 8212940005839430 p^{20} T^{12} - 509812485728 p^{25} T^{13} + 124773304 p^{30} T^{14} - 3768 p^{35} T^{15} + p^{40} T^{16} \)
37 \( 1 - 9252 T + 389364445 T^{2} - 2924994188780 T^{3} + 66964745580569125 T^{4} - \)\(42\!\cdots\!92\)\( T^{5} + \)\(70\!\cdots\!90\)\( T^{6} - \)\(38\!\cdots\!96\)\( T^{7} + \)\(55\!\cdots\!26\)\( T^{8} - \)\(38\!\cdots\!96\)\( p^{5} T^{9} + \)\(70\!\cdots\!90\)\( p^{10} T^{10} - \)\(42\!\cdots\!92\)\( p^{15} T^{11} + 66964745580569125 p^{20} T^{12} - 2924994188780 p^{25} T^{13} + 389364445 p^{30} T^{14} - 9252 p^{35} T^{15} + p^{40} T^{16} \)
41 \( 1 - 8756 T + 571131337 T^{2} - 5219543555448 T^{3} + 173989147503502253 T^{4} - \)\(14\!\cdots\!92\)\( T^{5} + \)\(34\!\cdots\!94\)\( T^{6} - \)\(24\!\cdots\!08\)\( T^{7} + \)\(46\!\cdots\!54\)\( T^{8} - \)\(24\!\cdots\!08\)\( p^{5} T^{9} + \)\(34\!\cdots\!94\)\( p^{10} T^{10} - \)\(14\!\cdots\!92\)\( p^{15} T^{11} + 173989147503502253 p^{20} T^{12} - 5219543555448 p^{25} T^{13} + 571131337 p^{30} T^{14} - 8756 p^{35} T^{15} + p^{40} T^{16} \)
43 \( 1 - 15290 T + 679752677 T^{2} - 6980272019150 T^{3} + 179279007856110034 T^{4} - \)\(10\!\cdots\!90\)\( T^{5} + \)\(24\!\cdots\!83\)\( T^{6} - \)\(37\!\cdots\!50\)\( T^{7} + \)\(29\!\cdots\!50\)\( T^{8} - \)\(37\!\cdots\!50\)\( p^{5} T^{9} + \)\(24\!\cdots\!83\)\( p^{10} T^{10} - \)\(10\!\cdots\!90\)\( p^{15} T^{11} + 179279007856110034 p^{20} T^{12} - 6980272019150 p^{25} T^{13} + 679752677 p^{30} T^{14} - 15290 p^{35} T^{15} + p^{40} T^{16} \)
47 \( 1 - 8516 T + 353905213 T^{2} - 2702164222340 T^{3} + 154084054928339793 T^{4} - \)\(67\!\cdots\!40\)\( T^{5} + \)\(25\!\cdots\!50\)\( T^{6} - \)\(79\!\cdots\!36\)\( T^{7} + \)\(79\!\cdots\!02\)\( T^{8} - \)\(79\!\cdots\!36\)\( p^{5} T^{9} + \)\(25\!\cdots\!50\)\( p^{10} T^{10} - \)\(67\!\cdots\!40\)\( p^{15} T^{11} + 154084054928339793 p^{20} T^{12} - 2702164222340 p^{25} T^{13} + 353905213 p^{30} T^{14} - 8516 p^{35} T^{15} + p^{40} T^{16} \)
53 \( 1 - 575 p T + 2558062970 T^{2} - 69023752837000 T^{3} + 3169575847517452230 T^{4} - \)\(73\!\cdots\!25\)\( T^{5} + \)\(24\!\cdots\!27\)\( T^{6} - \)\(47\!\cdots\!00\)\( T^{7} + \)\(12\!\cdots\!60\)\( T^{8} - \)\(47\!\cdots\!00\)\( p^{5} T^{9} + \)\(24\!\cdots\!27\)\( p^{10} T^{10} - \)\(73\!\cdots\!25\)\( p^{15} T^{11} + 3169575847517452230 p^{20} T^{12} - 69023752837000 p^{25} T^{13} + 2558062970 p^{30} T^{14} - 575 p^{36} T^{15} + p^{40} T^{16} \)
59 \( 1 - 20400 T + 2673515925 T^{2} - 60048917751812 T^{3} + 4040751400422601561 T^{4} - \)\(93\!\cdots\!72\)\( T^{5} + \)\(42\!\cdots\!78\)\( T^{6} - \)\(94\!\cdots\!44\)\( T^{7} + \)\(34\!\cdots\!06\)\( T^{8} - \)\(94\!\cdots\!44\)\( p^{5} T^{9} + \)\(42\!\cdots\!78\)\( p^{10} T^{10} - \)\(93\!\cdots\!72\)\( p^{15} T^{11} + 4040751400422601561 p^{20} T^{12} - 60048917751812 p^{25} T^{13} + 2673515925 p^{30} T^{14} - 20400 p^{35} T^{15} + p^{40} T^{16} \)
61 \( 1 - 10511 T + 4430862386 T^{2} - 41480469699068 T^{3} + 9044373250333245454 T^{4} - \)\(70\!\cdots\!81\)\( T^{5} + \)\(11\!\cdots\!31\)\( T^{6} - \)\(75\!\cdots\!72\)\( T^{7} + \)\(11\!\cdots\!28\)\( T^{8} - \)\(75\!\cdots\!72\)\( p^{5} T^{9} + \)\(11\!\cdots\!31\)\( p^{10} T^{10} - \)\(70\!\cdots\!81\)\( p^{15} T^{11} + 9044373250333245454 p^{20} T^{12} - 41480469699068 p^{25} T^{13} + 4430862386 p^{30} T^{14} - 10511 p^{35} T^{15} + p^{40} T^{16} \)
67 \( 1 + 616 T + 6992153588 T^{2} + 60819047841672 T^{3} + 23295577694480225076 T^{4} + \)\(32\!\cdots\!72\)\( T^{5} + \)\(50\!\cdots\!36\)\( T^{6} + \)\(78\!\cdots\!44\)\( T^{7} + \)\(78\!\cdots\!46\)\( T^{8} + \)\(78\!\cdots\!44\)\( p^{5} T^{9} + \)\(50\!\cdots\!36\)\( p^{10} T^{10} + \)\(32\!\cdots\!72\)\( p^{15} T^{11} + 23295577694480225076 p^{20} T^{12} + 60819047841672 p^{25} T^{13} + 6992153588 p^{30} T^{14} + 616 p^{35} T^{15} + p^{40} T^{16} \)
71 \( 1 - 31862 T + 4763146327 T^{2} - 207973744950032 T^{3} + 17765665956346644114 T^{4} - \)\(73\!\cdots\!08\)\( T^{5} + \)\(49\!\cdots\!37\)\( T^{6} - \)\(17\!\cdots\!10\)\( T^{7} + \)\(10\!\cdots\!10\)\( T^{8} - \)\(17\!\cdots\!10\)\( p^{5} T^{9} + \)\(49\!\cdots\!37\)\( p^{10} T^{10} - \)\(73\!\cdots\!08\)\( p^{15} T^{11} + 17765665956346644114 p^{20} T^{12} - 207973744950032 p^{25} T^{13} + 4763146327 p^{30} T^{14} - 31862 p^{35} T^{15} + p^{40} T^{16} \)
73 \( 1 + 37377 T + 9691718398 T^{2} + 250095109755704 T^{3} + 38779425301856091094 T^{4} + \)\(70\!\cdots\!67\)\( T^{5} + \)\(13\!\cdots\!23\)\( p T^{6} + \)\(13\!\cdots\!68\)\( T^{7} + \)\(19\!\cdots\!40\)\( T^{8} + \)\(13\!\cdots\!68\)\( p^{5} T^{9} + \)\(13\!\cdots\!23\)\( p^{11} T^{10} + \)\(70\!\cdots\!67\)\( p^{15} T^{11} + 38779425301856091094 p^{20} T^{12} + 250095109755704 p^{25} T^{13} + 9691718398 p^{30} T^{14} + 37377 p^{35} T^{15} + p^{40} T^{16} \)
79 \( 1 + 71679 T + 11592600248 T^{2} + 343428184255746 T^{3} + 50334349577414442244 T^{4} + \)\(19\!\cdots\!11\)\( T^{5} + \)\(13\!\cdots\!43\)\( T^{6} - \)\(42\!\cdots\!60\)\( T^{7} + \)\(31\!\cdots\!20\)\( T^{8} - \)\(42\!\cdots\!60\)\( p^{5} T^{9} + \)\(13\!\cdots\!43\)\( p^{10} T^{10} + \)\(19\!\cdots\!11\)\( p^{15} T^{11} + 50334349577414442244 p^{20} T^{12} + 343428184255746 p^{25} T^{13} + 11592600248 p^{30} T^{14} + 71679 p^{35} T^{15} + p^{40} T^{16} \)
83 \( 1 + 61543 T + 21354644495 T^{2} + 1036154948064317 T^{3} + \)\(21\!\cdots\!00\)\( T^{4} + \)\(85\!\cdots\!75\)\( T^{5} + \)\(13\!\cdots\!34\)\( T^{6} + \)\(45\!\cdots\!04\)\( T^{7} + \)\(64\!\cdots\!99\)\( T^{8} + \)\(45\!\cdots\!04\)\( p^{5} T^{9} + \)\(13\!\cdots\!34\)\( p^{10} T^{10} + \)\(85\!\cdots\!75\)\( p^{15} T^{11} + \)\(21\!\cdots\!00\)\( p^{20} T^{12} + 1036154948064317 p^{25} T^{13} + 21354644495 p^{30} T^{14} + 61543 p^{35} T^{15} + p^{40} T^{16} \)
89 \( 1 + 14961 T + 24626385913 T^{2} + 1040589268863261 T^{3} + \)\(29\!\cdots\!20\)\( T^{4} + \)\(16\!\cdots\!89\)\( T^{5} + \)\(26\!\cdots\!48\)\( T^{6} + \)\(13\!\cdots\!22\)\( T^{7} + \)\(17\!\cdots\!17\)\( T^{8} + \)\(13\!\cdots\!22\)\( p^{5} T^{9} + \)\(26\!\cdots\!48\)\( p^{10} T^{10} + \)\(16\!\cdots\!89\)\( p^{15} T^{11} + \)\(29\!\cdots\!20\)\( p^{20} T^{12} + 1040589268863261 p^{25} T^{13} + 24626385913 p^{30} T^{14} + 14961 p^{35} T^{15} + p^{40} T^{16} \)
97 \( 1 - 186419 T + 12788834187 T^{2} + 277956286846529 T^{3} + 3573328297180559084 T^{4} - \)\(10\!\cdots\!11\)\( T^{5} + \)\(14\!\cdots\!42\)\( T^{6} - \)\(73\!\cdots\!66\)\( T^{7} + \)\(56\!\cdots\!95\)\( T^{8} - \)\(73\!\cdots\!66\)\( p^{5} T^{9} + \)\(14\!\cdots\!42\)\( p^{10} T^{10} - \)\(10\!\cdots\!11\)\( p^{15} T^{11} + 3573328297180559084 p^{20} T^{12} + 277956286846529 p^{25} T^{13} + 12788834187 p^{30} T^{14} - 186419 p^{35} T^{15} + p^{40} T^{16} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−3.56251338598277829399163215825, −3.00458527039790607141616736370, −2.99535311315805961561638383828, −2.93562146018154095751748581758, −2.91425596064450502815069306259, −2.91275310933124350273586983549, −2.88725794584531715391114905387, −2.73854356549439115407926822824, −2.52563476474985293456710137724, −2.17017840287310172892438214336, −2.09653614068863883264068975156, −1.93202248989083001425158108251, −1.76701432019949715882330903078, −1.76059418641171176093122128075, −1.75881736468351861764410349425, −1.56549028518069819016539282236, −1.31877067029414172646003803409, −1.14256593901207743922366141036, −0.71965051475183915677881963072, −0.70549675726950669017363838456, −0.67554413549722652663076284114, −0.64241412596652426288203802490, −0.62673361611550052738025976653, −0.53580571162123177534505436548, −0.10200329936327162049398419941, 0.10200329936327162049398419941, 0.53580571162123177534505436548, 0.62673361611550052738025976653, 0.64241412596652426288203802490, 0.67554413549722652663076284114, 0.70549675726950669017363838456, 0.71965051475183915677881963072, 1.14256593901207743922366141036, 1.31877067029414172646003803409, 1.56549028518069819016539282236, 1.75881736468351861764410349425, 1.76059418641171176093122128075, 1.76701432019949715882330903078, 1.93202248989083001425158108251, 2.09653614068863883264068975156, 2.17017840287310172892438214336, 2.52563476474985293456710137724, 2.73854356549439115407926822824, 2.88725794584531715391114905387, 2.91275310933124350273586983549, 2.91425596064450502815069306259, 2.93562146018154095751748581758, 2.99535311315805961561638383828, 3.00458527039790607141616736370, 3.56251338598277829399163215825

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.