L(s) = 1 | + (1.71 − 1.71i)2-s + (−3.25 − 3.25i)3-s − 1.86i·4-s + (−4.79 − 1.42i)5-s − 11.1·6-s + (2.88 − 2.88i)7-s + (3.66 + 3.66i)8-s + 12.1i·9-s + (−10.6 + 5.76i)10-s − 12.0·11-s + (−6.05 + 6.05i)12-s + (−12.4 − 12.4i)13-s − 9.86i·14-s + (10.9 + 20.2i)15-s + 19.9·16-s + (21.2 − 21.2i)17-s + ⋯ |
L(s) = 1 | + (0.855 − 0.855i)2-s + (−1.08 − 1.08i)3-s − 0.465i·4-s + (−0.958 − 0.284i)5-s − 1.85·6-s + (0.411 − 0.411i)7-s + (0.457 + 0.457i)8-s + 1.35i·9-s + (−1.06 + 0.576i)10-s − 1.09·11-s + (−0.504 + 0.504i)12-s + (−0.961 − 0.961i)13-s − 0.704i·14-s + (0.730 + 1.34i)15-s + 1.24·16-s + (1.25 − 1.25i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 115 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.998 - 0.0569i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 115 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.998 - 0.0569i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.0306668 + 1.07564i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0306668 + 1.07564i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (4.79 + 1.42i)T \) |
| 23 | \( 1 + (-3.39 - 3.39i)T \) |
good | 2 | \( 1 + (-1.71 + 1.71i)T - 4iT^{2} \) |
| 3 | \( 1 + (3.25 + 3.25i)T + 9iT^{2} \) |
| 7 | \( 1 + (-2.88 + 2.88i)T - 49iT^{2} \) |
| 11 | \( 1 + 12.0T + 121T^{2} \) |
| 13 | \( 1 + (12.4 + 12.4i)T + 169iT^{2} \) |
| 17 | \( 1 + (-21.2 + 21.2i)T - 289iT^{2} \) |
| 19 | \( 1 + 8.56iT - 361T^{2} \) |
| 29 | \( 1 + 41.0iT - 841T^{2} \) |
| 31 | \( 1 - 6.48T + 961T^{2} \) |
| 37 | \( 1 + (-14.3 + 14.3i)T - 1.36e3iT^{2} \) |
| 41 | \( 1 + 26.2T + 1.68e3T^{2} \) |
| 43 | \( 1 + (-41.3 - 41.3i)T + 1.84e3iT^{2} \) |
| 47 | \( 1 + (12.4 - 12.4i)T - 2.20e3iT^{2} \) |
| 53 | \( 1 + (4.51 + 4.51i)T + 2.80e3iT^{2} \) |
| 59 | \( 1 - 48.3iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 89.1T + 3.72e3T^{2} \) |
| 67 | \( 1 + (-41.9 + 41.9i)T - 4.48e3iT^{2} \) |
| 71 | \( 1 + 100.T + 5.04e3T^{2} \) |
| 73 | \( 1 + (-34.7 - 34.7i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 + 69.4iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (81.6 + 81.6i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 + 53.2iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-106. + 106. i)T - 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.68895079640322055203874456891, −11.82913021406457126417058687983, −11.33594029292396477849441077133, −10.24144805800172497586006972620, −7.68221950168710697718364292320, −7.61345431735882963927360327378, −5.48859063212663921384592409759, −4.69794216978951377198003136403, −2.82324552942026980066946616655, −0.68738082524536044905615791999,
3.79994141451987811696053481097, 4.88614326756161286926567983146, 5.57519877885699709128609156776, 6.93251566997441627737618155896, 8.141413460673175631741166491100, 10.01786906239878593570674259642, 10.72845019238742096714010288514, 11.88351861789290505926340165833, 12.65798012061106800426282249355, 14.41891503163859693889837784876