Properties

Label 2-115-5.3-c2-0-21
Degree 22
Conductor 115115
Sign 0.9980.0569i-0.998 - 0.0569i
Analytic cond. 3.133523.13352
Root an. cond. 1.770171.77017
Motivic weight 22
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.71 − 1.71i)2-s + (−3.25 − 3.25i)3-s − 1.86i·4-s + (−4.79 − 1.42i)5-s − 11.1·6-s + (2.88 − 2.88i)7-s + (3.66 + 3.66i)8-s + 12.1i·9-s + (−10.6 + 5.76i)10-s − 12.0·11-s + (−6.05 + 6.05i)12-s + (−12.4 − 12.4i)13-s − 9.86i·14-s + (10.9 + 20.2i)15-s + 19.9·16-s + (21.2 − 21.2i)17-s + ⋯
L(s)  = 1  + (0.855 − 0.855i)2-s + (−1.08 − 1.08i)3-s − 0.465i·4-s + (−0.958 − 0.284i)5-s − 1.85·6-s + (0.411 − 0.411i)7-s + (0.457 + 0.457i)8-s + 1.35i·9-s + (−1.06 + 0.576i)10-s − 1.09·11-s + (−0.504 + 0.504i)12-s + (−0.961 − 0.961i)13-s − 0.704i·14-s + (0.730 + 1.34i)15-s + 1.24·16-s + (1.25 − 1.25i)17-s + ⋯

Functional equation

Λ(s)=(115s/2ΓC(s)L(s)=((0.9980.0569i)Λ(3s)\begin{aligned}\Lambda(s)=\mathstrut & 115 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.998 - 0.0569i)\, \overline{\Lambda}(3-s) \end{aligned}
Λ(s)=(115s/2ΓC(s+1)L(s)=((0.9980.0569i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 115 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.998 - 0.0569i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 115115    =    5235 \cdot 23
Sign: 0.9980.0569i-0.998 - 0.0569i
Analytic conductor: 3.133523.13352
Root analytic conductor: 1.770171.77017
Motivic weight: 22
Rational: no
Arithmetic: yes
Character: χ115(93,)\chi_{115} (93, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 115, ( :1), 0.9980.0569i)(2,\ 115,\ (\ :1),\ -0.998 - 0.0569i)

Particular Values

L(32)L(\frac{3}{2}) \approx 0.0306668+1.07564i0.0306668 + 1.07564i
L(12)L(\frac12) \approx 0.0306668+1.07564i0.0306668 + 1.07564i
L(2)L(2) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad5 1+(4.79+1.42i)T 1 + (4.79 + 1.42i)T
23 1+(3.393.39i)T 1 + (-3.39 - 3.39i)T
good2 1+(1.71+1.71i)T4iT2 1 + (-1.71 + 1.71i)T - 4iT^{2}
3 1+(3.25+3.25i)T+9iT2 1 + (3.25 + 3.25i)T + 9iT^{2}
7 1+(2.88+2.88i)T49iT2 1 + (-2.88 + 2.88i)T - 49iT^{2}
11 1+12.0T+121T2 1 + 12.0T + 121T^{2}
13 1+(12.4+12.4i)T+169iT2 1 + (12.4 + 12.4i)T + 169iT^{2}
17 1+(21.2+21.2i)T289iT2 1 + (-21.2 + 21.2i)T - 289iT^{2}
19 1+8.56iT361T2 1 + 8.56iT - 361T^{2}
29 1+41.0iT841T2 1 + 41.0iT - 841T^{2}
31 16.48T+961T2 1 - 6.48T + 961T^{2}
37 1+(14.3+14.3i)T1.36e3iT2 1 + (-14.3 + 14.3i)T - 1.36e3iT^{2}
41 1+26.2T+1.68e3T2 1 + 26.2T + 1.68e3T^{2}
43 1+(41.341.3i)T+1.84e3iT2 1 + (-41.3 - 41.3i)T + 1.84e3iT^{2}
47 1+(12.412.4i)T2.20e3iT2 1 + (12.4 - 12.4i)T - 2.20e3iT^{2}
53 1+(4.51+4.51i)T+2.80e3iT2 1 + (4.51 + 4.51i)T + 2.80e3iT^{2}
59 148.3iT3.48e3T2 1 - 48.3iT - 3.48e3T^{2}
61 189.1T+3.72e3T2 1 - 89.1T + 3.72e3T^{2}
67 1+(41.9+41.9i)T4.48e3iT2 1 + (-41.9 + 41.9i)T - 4.48e3iT^{2}
71 1+100.T+5.04e3T2 1 + 100.T + 5.04e3T^{2}
73 1+(34.734.7i)T+5.32e3iT2 1 + (-34.7 - 34.7i)T + 5.32e3iT^{2}
79 1+69.4iT6.24e3T2 1 + 69.4iT - 6.24e3T^{2}
83 1+(81.6+81.6i)T+6.88e3iT2 1 + (81.6 + 81.6i)T + 6.88e3iT^{2}
89 1+53.2iT7.92e3T2 1 + 53.2iT - 7.92e3T^{2}
97 1+(106.+106.i)T9.40e3iT2 1 + (-106. + 106. i)T - 9.40e3iT^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−12.68895079640322055203874456891, −11.82913021406457126417058687983, −11.33594029292396477849441077133, −10.24144805800172497586006972620, −7.68221950168710697718364292320, −7.61345431735882963927360327378, −5.48859063212663921384592409759, −4.69794216978951377198003136403, −2.82324552942026980066946616655, −0.68738082524536044905615791999, 3.79994141451987811696053481097, 4.88614326756161286926567983146, 5.57519877885699709128609156776, 6.93251566997441627737618155896, 8.141413460673175631741166491100, 10.01786906239878593570674259642, 10.72845019238742096714010288514, 11.88351861789290505926340165833, 12.65798012061106800426282249355, 14.41891503163859693889837784876

Graph of the ZZ-function along the critical line