L(s) = 1 | − 4.94i·2-s − 6.82i·3-s − 8.45·4-s + (22.1 + 11.6i)5-s − 33.7·6-s + 47.4·7-s − 37.2i·8-s + 34.3·9-s + (57.5 − 109. i)10-s − 121. i·11-s + 57.7i·12-s − 25.2i·13-s − 234. i·14-s + (79.4 − 151. i)15-s − 319.·16-s + 130.·17-s + ⋯ |
L(s) = 1 | − 1.23i·2-s − 0.758i·3-s − 0.528·4-s + (0.884 + 0.465i)5-s − 0.938·6-s + 0.967·7-s − 0.582i·8-s + 0.424·9-s + (0.575 − 1.09i)10-s − 1.00i·11-s + 0.401i·12-s − 0.149i·13-s − 1.19i·14-s + (0.353 − 0.671i)15-s − 1.24·16-s + 0.453·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 115 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.785 + 0.618i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 115 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (-0.785 + 0.618i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{5}{2})\) |
\(\approx\) |
\(0.787152 - 2.27050i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.787152 - 2.27050i\) |
\(L(3)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-22.1 - 11.6i)T \) |
| 23 | \( 1 + (215. - 483. i)T \) |
good | 2 | \( 1 + 4.94iT - 16T^{2} \) |
| 3 | \( 1 + 6.82iT - 81T^{2} \) |
| 7 | \( 1 - 47.4T + 2.40e3T^{2} \) |
| 11 | \( 1 + 121. iT - 1.46e4T^{2} \) |
| 13 | \( 1 + 25.2iT - 2.85e4T^{2} \) |
| 17 | \( 1 - 130.T + 8.35e4T^{2} \) |
| 19 | \( 1 - 292. iT - 1.30e5T^{2} \) |
| 29 | \( 1 + 790.T + 7.07e5T^{2} \) |
| 31 | \( 1 - 365.T + 9.23e5T^{2} \) |
| 37 | \( 1 + 471.T + 1.87e6T^{2} \) |
| 41 | \( 1 + 1.82e3T + 2.82e6T^{2} \) |
| 43 | \( 1 + 7.12T + 3.41e6T^{2} \) |
| 47 | \( 1 + 2.54e3iT - 4.87e6T^{2} \) |
| 53 | \( 1 - 2.85e3T + 7.89e6T^{2} \) |
| 59 | \( 1 + 4.05e3T + 1.21e7T^{2} \) |
| 61 | \( 1 - 3.18e3iT - 1.38e7T^{2} \) |
| 67 | \( 1 - 6.09e3T + 2.01e7T^{2} \) |
| 71 | \( 1 - 4.38e3T + 2.54e7T^{2} \) |
| 73 | \( 1 - 3.21e3iT - 2.83e7T^{2} \) |
| 79 | \( 1 - 8.82e3iT - 3.89e7T^{2} \) |
| 83 | \( 1 - 1.28e4T + 4.74e7T^{2} \) |
| 89 | \( 1 - 5.49e3iT - 6.27e7T^{2} \) |
| 97 | \( 1 + 1.55e4T + 8.85e7T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.30062411078032024381886058081, −11.43095537603719224267943023859, −10.52678158913427873614714879902, −9.643705484868068059863746037935, −8.124130466876550462793722216709, −6.86977467356658360987381341671, −5.55387233804520840172023696281, −3.60158180686380508253842052346, −2.08394538685267049832454819759, −1.21154401734667787488633429571,
1.92115263247982645026398528751, 4.58188178672209420021986748322, 5.17419282107707371206942225397, 6.56847892459730308029660401646, 7.72437622903642626529742228213, 8.892116920432885198930052820999, 9.855694649400579874405921151474, 10.96783168266545128689222811100, 12.37670578513629432501002104182, 13.64972617176079384860924914165