L(s) = 1 | − 2-s + 4-s + 1.41·5-s − 8-s + 9-s − 1.41·10-s + 16-s − 18-s + 1.41·20-s + 1.00·25-s − 1.41·29-s − 32-s + 36-s − 1.41·37-s − 1.41·40-s − 1.41·41-s + 1.41·45-s + 49-s − 1.00·50-s + 1.41·58-s + 1.41·61-s + 64-s − 72-s − 1.41·73-s + 1.41·74-s + 1.41·80-s + 81-s + ⋯ |
L(s) = 1 | − 2-s + 4-s + 1.41·5-s − 8-s + 9-s − 1.41·10-s + 16-s − 18-s + 1.41·20-s + 1.00·25-s − 1.41·29-s − 32-s + 36-s − 1.41·37-s − 1.41·40-s − 1.41·41-s + 1.41·45-s + 49-s − 1.00·50-s + 1.41·58-s + 1.41·61-s + 64-s − 72-s − 1.41·73-s + 1.41·74-s + 1.41·80-s + 81-s + ⋯ |
Λ(s)=(=(1156s/2ΓC(s)L(s)Λ(1−s)
Λ(s)=(=(1156s/2ΓC(s)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
1156
= 22⋅172
|
Sign: |
1
|
Analytic conductor: |
0.576919 |
Root analytic conductor: |
0.759551 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1156(579,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 1156, ( :0), 1)
|
Particular Values
L(21) |
≈ |
0.9224402466 |
L(21) |
≈ |
0.9224402466 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 17 | 1 |
good | 3 | 1−T2 |
| 5 | 1−1.41T+T2 |
| 7 | 1−T2 |
| 11 | 1−T2 |
| 13 | 1+T2 |
| 19 | 1−T2 |
| 23 | 1−T2 |
| 29 | 1+1.41T+T2 |
| 31 | 1−T2 |
| 37 | 1+1.41T+T2 |
| 41 | 1+1.41T+T2 |
| 43 | 1−T2 |
| 47 | 1−T2 |
| 53 | 1+T2 |
| 59 | 1−T2 |
| 61 | 1−1.41T+T2 |
| 67 | 1−T2 |
| 71 | 1−T2 |
| 73 | 1+1.41T+T2 |
| 79 | 1−T2 |
| 83 | 1−T2 |
| 89 | 1+T2 |
| 97 | 1−1.41T+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.07119591672476248371186517129, −9.253176209357900988401001777534, −8.616008782696301635635136454714, −7.44553303887263391257875235573, −6.83164465893778212385571895107, −5.95573941740973026735021173568, −5.14169447944175471979683650678, −3.61006690859387285815609488211, −2.23508563830816040785000016830, −1.49415910324576107748984374736,
1.49415910324576107748984374736, 2.23508563830816040785000016830, 3.61006690859387285815609488211, 5.14169447944175471979683650678, 5.95573941740973026735021173568, 6.83164465893778212385571895107, 7.44553303887263391257875235573, 8.616008782696301635635136454714, 9.253176209357900988401001777534, 10.07119591672476248371186517129