Properties

Label 2-34e2-4.3-c0-0-1
Degree $2$
Conductor $1156$
Sign $1$
Analytic cond. $0.576919$
Root an. cond. $0.759551$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 1.41·5-s − 8-s + 9-s − 1.41·10-s + 16-s − 18-s + 1.41·20-s + 1.00·25-s − 1.41·29-s − 32-s + 36-s − 1.41·37-s − 1.41·40-s − 1.41·41-s + 1.41·45-s + 49-s − 1.00·50-s + 1.41·58-s + 1.41·61-s + 64-s − 72-s − 1.41·73-s + 1.41·74-s + 1.41·80-s + 81-s + ⋯
L(s)  = 1  − 2-s + 4-s + 1.41·5-s − 8-s + 9-s − 1.41·10-s + 16-s − 18-s + 1.41·20-s + 1.00·25-s − 1.41·29-s − 32-s + 36-s − 1.41·37-s − 1.41·40-s − 1.41·41-s + 1.41·45-s + 49-s − 1.00·50-s + 1.41·58-s + 1.41·61-s + 64-s − 72-s − 1.41·73-s + 1.41·74-s + 1.41·80-s + 81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1156 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1156 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1156\)    =    \(2^{2} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(0.576919\)
Root analytic conductor: \(0.759551\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{1156} (579, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1156,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.9224402466\)
\(L(\frac12)\) \(\approx\) \(0.9224402466\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
17 \( 1 \)
good3 \( 1 - T^{2} \)
5 \( 1 - 1.41T + T^{2} \)
7 \( 1 - T^{2} \)
11 \( 1 - T^{2} \)
13 \( 1 + T^{2} \)
19 \( 1 - T^{2} \)
23 \( 1 - T^{2} \)
29 \( 1 + 1.41T + T^{2} \)
31 \( 1 - T^{2} \)
37 \( 1 + 1.41T + T^{2} \)
41 \( 1 + 1.41T + T^{2} \)
43 \( 1 - T^{2} \)
47 \( 1 - T^{2} \)
53 \( 1 + T^{2} \)
59 \( 1 - T^{2} \)
61 \( 1 - 1.41T + T^{2} \)
67 \( 1 - T^{2} \)
71 \( 1 - T^{2} \)
73 \( 1 + 1.41T + T^{2} \)
79 \( 1 - T^{2} \)
83 \( 1 - T^{2} \)
89 \( 1 + T^{2} \)
97 \( 1 - 1.41T + T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.07119591672476248371186517129, −9.253176209357900988401001777534, −8.616008782696301635635136454714, −7.44553303887263391257875235573, −6.83164465893778212385571895107, −5.95573941740973026735021173568, −5.14169447944175471979683650678, −3.61006690859387285815609488211, −2.23508563830816040785000016830, −1.49415910324576107748984374736, 1.49415910324576107748984374736, 2.23508563830816040785000016830, 3.61006690859387285815609488211, 5.14169447944175471979683650678, 5.95573941740973026735021173568, 6.83164465893778212385571895107, 7.44553303887263391257875235573, 8.616008782696301635635136454714, 9.253176209357900988401001777534, 10.07119591672476248371186517129

Graph of the $Z$-function along the critical line