L(s) = 1 | + (−2.24 + 0.600i)2-s + (0.724 + 1.57i)3-s + (2.92 − 1.69i)4-s + (1.01 − 3.78i)5-s + (−2.56 − 3.09i)6-s + (2.27 − 0.608i)7-s + (−2.26 + 2.26i)8-s + (−1.95 + 2.27i)9-s + 9.08i·10-s + (0.637 + 2.38i)11-s + (4.78 + 3.38i)12-s + (1.99 − 3.00i)13-s + (−4.72 + 2.72i)14-s + (6.68 − 1.14i)15-s + (0.335 − 0.581i)16-s + 0.901·17-s + ⋯ |
L(s) = 1 | + (−1.58 + 0.424i)2-s + (0.418 + 0.908i)3-s + (1.46 − 0.845i)4-s + (0.453 − 1.69i)5-s + (−1.04 − 1.26i)6-s + (0.858 − 0.230i)7-s + (−0.801 + 0.801i)8-s + (−0.650 + 0.759i)9-s + 2.87i·10-s + (0.192 + 0.717i)11-s + (1.38 + 0.976i)12-s + (0.553 − 0.832i)13-s + (−1.26 + 0.729i)14-s + (1.72 − 0.295i)15-s + (0.0838 − 0.145i)16-s + 0.218·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.922 - 0.385i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.922 - 0.385i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.656818 + 0.131723i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.656818 + 0.131723i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.724 - 1.57i)T \) |
| 13 | \( 1 + (-1.99 + 3.00i)T \) |
good | 2 | \( 1 + (2.24 - 0.600i)T + (1.73 - i)T^{2} \) |
| 5 | \( 1 + (-1.01 + 3.78i)T + (-4.33 - 2.5i)T^{2} \) |
| 7 | \( 1 + (-2.27 + 0.608i)T + (6.06 - 3.5i)T^{2} \) |
| 11 | \( 1 + (-0.637 - 2.38i)T + (-9.52 + 5.5i)T^{2} \) |
| 17 | \( 1 - 0.901T + 17T^{2} \) |
| 19 | \( 1 + (2.07 - 2.07i)T - 19iT^{2} \) |
| 23 | \( 1 + (-1.50 - 2.60i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.19 - 1.26i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-1.92 - 0.516i)T + (26.8 + 15.5i)T^{2} \) |
| 37 | \( 1 + (7.88 + 7.88i)T + 37iT^{2} \) |
| 41 | \( 1 + (0.895 - 3.34i)T + (-35.5 - 20.5i)T^{2} \) |
| 43 | \( 1 + (-5.11 - 2.95i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-0.259 - 0.966i)T + (-40.7 + 23.5i)T^{2} \) |
| 53 | \( 1 - 0.635iT - 53T^{2} \) |
| 59 | \( 1 + (5.54 + 1.48i)T + (51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (4.38 - 7.58i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (8.84 + 2.37i)T + (58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 + (7.93 + 7.93i)T + 71iT^{2} \) |
| 73 | \( 1 + (-9.16 - 9.16i)T + 73iT^{2} \) |
| 79 | \( 1 + (0.204 - 0.353i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (3.66 - 0.982i)T + (71.8 - 41.5i)T^{2} \) |
| 89 | \( 1 + (10.0 - 10.0i)T - 89iT^{2} \) |
| 97 | \( 1 + (0.733 + 2.73i)T + (-84.0 + 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.76522553668930932826193898755, −12.46950227425898288849391338489, −10.96529773834811789960097845640, −10.05001158092943499196948095233, −9.169177496443813941043255271024, −8.479533100890136051194788873705, −7.72700055771208149616292663263, −5.65054115754548528664990125883, −4.45964904925987665761220357103, −1.52509719836628135297247262926,
1.81165844178678455103924968030, 2.97951775036803070516497326471, 6.32849185226057388628628728474, 7.11260518813545481899740024845, 8.240945338428186487694289612719, 9.048305871941290891006053587852, 10.39647051415069651888665537103, 11.18966689120698934304052080258, 11.86556846579138698335888656222, 13.73023864220123120683254535369