L(s) = 1 | + (−3.22 + 1.86i)2-s + (0.496 − 2.95i)3-s + (4.93 − 8.54i)4-s + (0.733 + 0.423i)5-s + (3.90 + 10.4i)6-s + (−2.32 − 4.01i)7-s + 21.8i·8-s + (−8.50 − 2.93i)9-s − 3.15·10-s + (−10.6 + 6.16i)11-s + (−22.8 − 18.8i)12-s + (−1.80 + 3.12i)13-s + (14.9 + 8.63i)14-s + (1.61 − 1.96i)15-s + (−20.9 − 36.2i)16-s − 25.9i·17-s + ⋯ |
L(s) = 1 | + (−1.61 + 0.930i)2-s + (0.165 − 0.986i)3-s + (1.23 − 2.13i)4-s + (0.146 + 0.0847i)5-s + (0.651 + 1.74i)6-s + (−0.331 − 0.574i)7-s + 2.73i·8-s + (−0.945 − 0.326i)9-s − 0.315·10-s + (−0.970 + 0.560i)11-s + (−1.90 − 1.56i)12-s + (−0.138 + 0.240i)13-s + (1.06 + 0.617i)14-s + (0.107 − 0.130i)15-s + (−1.30 − 2.26i)16-s − 1.52i·17-s + ⋯ |
Λ(s)=(=(117s/2ΓC(s)L(s)(−0.629+0.776i)Λ(3−s)
Λ(s)=(=(117s/2ΓC(s+1)L(s)(−0.629+0.776i)Λ(1−s)
Degree: |
2 |
Conductor: |
117
= 32⋅13
|
Sign: |
−0.629+0.776i
|
Analytic conductor: |
3.18801 |
Root analytic conductor: |
1.78550 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ117(14,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 117, ( :1), −0.629+0.776i)
|
Particular Values
L(23) |
≈ |
0.123980−0.260159i |
L(21) |
≈ |
0.123980−0.260159i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.496+2.95i)T |
| 13 | 1+(1.80−3.12i)T |
good | 2 | 1+(3.22−1.86i)T+(2−3.46i)T2 |
| 5 | 1+(−0.733−0.423i)T+(12.5+21.6i)T2 |
| 7 | 1+(2.32+4.01i)T+(−24.5+42.4i)T2 |
| 11 | 1+(10.6−6.16i)T+(60.5−104.i)T2 |
| 17 | 1+25.9iT−289T2 |
| 19 | 1+12.4T+361T2 |
| 23 | 1+(−0.958−0.553i)T+(264.5+458.i)T2 |
| 29 | 1+(40.9−23.6i)T+(420.5−728.i)T2 |
| 31 | 1+(−5.53+9.57i)T+(−480.5−832.i)T2 |
| 37 | 1−4.57T+1.36e3T2 |
| 41 | 1+(64.3+37.1i)T+(840.5+1.45e3i)T2 |
| 43 | 1+(−35.0−60.6i)T+(−924.5+1.60e3i)T2 |
| 47 | 1+(−61.9+35.7i)T+(1.10e3−1.91e3i)T2 |
| 53 | 1+88.9iT−2.80e3T2 |
| 59 | 1+(−35.0−20.2i)T+(1.74e3+3.01e3i)T2 |
| 61 | 1+(−29.6−51.4i)T+(−1.86e3+3.22e3i)T2 |
| 67 | 1+(−11.8+20.5i)T+(−2.24e3−3.88e3i)T2 |
| 71 | 1−49.7iT−5.04e3T2 |
| 73 | 1−10.8T+5.32e3T2 |
| 79 | 1+(3.54+6.13i)T+(−3.12e3+5.40e3i)T2 |
| 83 | 1+(−14.0+8.12i)T+(3.44e3−5.96e3i)T2 |
| 89 | 1+31.1iT−7.92e3T2 |
| 97 | 1+(50.9+88.3i)T+(−4.70e3+8.14e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.09272702501050001521765423542, −11.61537163505527065814025259197, −10.43171466232481415471789801602, −9.501482206345124253927602924283, −8.406308601124964929815843634085, −7.34662348328921715678831028908, −6.87966183936390884572052520286, −5.51099735199299567248936870723, −2.21252598026336339194040896378, −0.31051741515279282621295833119,
2.35031573048095493662594938460, 3.65349316292417534809230668172, 5.81354095803711066459364550684, 7.83535571128855652578464164568, 8.664873066810216427468746708056, 9.496834204690298509979137801990, 10.47751103236856546901472420569, 11.00861079911640623116216775424, 12.24904345565588201305269633195, 13.29204858667899789211492765726