L(s) = 1 | + (−1.03 + 1.79i)2-s + (1.27 + 2.20i)3-s + (−1.13 − 1.97i)4-s + (−0.427 + 0.741i)5-s − 5.26·6-s + (0.562 + 2.58i)7-s + 0.572·8-s + (−1.73 + 3.00i)9-s + (−0.884 − 1.53i)10-s + (3.02 + 5.23i)11-s + (2.89 − 5.01i)12-s + (−5.21 − 1.66i)14-s − 2.17·15-s + (1.68 − 2.91i)16-s + (−2.35 − 4.07i)17-s + (−3.59 − 6.21i)18-s + ⋯ |
L(s) = 1 | + (−0.731 + 1.26i)2-s + (0.734 + 1.27i)3-s + (−0.569 − 0.985i)4-s + (−0.191 + 0.331i)5-s − 2.14·6-s + (0.212 + 0.977i)7-s + 0.202·8-s + (−0.578 + 1.00i)9-s + (−0.279 − 0.484i)10-s + (0.911 + 1.57i)11-s + (0.836 − 1.44i)12-s + (−1.39 − 0.445i)14-s − 0.562·15-s + (0.421 − 0.729i)16-s + (−0.570 − 0.987i)17-s + (−0.846 − 1.46i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1183 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.243 + 0.969i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1183 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.243 + 0.969i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.269119413\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.269119413\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 + (-0.562 - 2.58i)T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (1.03 - 1.79i)T + (-1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (-1.27 - 2.20i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (0.427 - 0.741i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-3.02 - 5.23i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (2.35 + 4.07i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (1.48 - 2.57i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (1.62 - 2.81i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 4.50T + 29T^{2} \) |
| 31 | \( 1 + (0.970 + 1.68i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-4.23 + 7.34i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 8.47T + 41T^{2} \) |
| 43 | \( 1 - 3.13T + 43T^{2} \) |
| 47 | \( 1 + (-1.52 + 2.63i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-3.98 - 6.89i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (3.32 + 5.76i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-5.60 + 9.71i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (4.87 + 8.43i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 5.35T + 71T^{2} \) |
| 73 | \( 1 + (1.78 + 3.09i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-0.405 + 0.702i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 17.0T + 83T^{2} \) |
| 89 | \( 1 + (7.59 - 13.1i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 15.2T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.690980082125321352231432761505, −9.423308750537074832492055115198, −8.849493158030816189698946528257, −7.991984810881573161797512136040, −7.18065473460302059520601314912, −6.39261022561668980407899713375, −5.25693608616076705021207909254, −4.51732086144241238268494172259, −3.41577443013819795440591699025, −2.19204123097666026482000039009,
0.69962585981502450985978099889, 1.34275415558837543514544824218, 2.50190586948100868094432059104, 3.44335496173857931101940558422, 4.35832833306136626734153008102, 6.23566410226330577918809880702, 6.76494728154233324653443900341, 8.013936478208213980483071066160, 8.576760446289759606207142010635, 8.835890235984563759828280244517