L(s) = 1 | + (−0.771 + 1.33i)2-s + (0.676 + 1.17i)3-s + (−0.191 − 0.332i)4-s + (−0.170 + 0.296i)5-s − 2.08·6-s + (2.12 − 1.57i)7-s − 2.49·8-s + (0.584 − 1.01i)9-s + (−0.263 − 0.457i)10-s + (−2.77 − 4.81i)11-s + (0.259 − 0.449i)12-s + (0.460 + 4.05i)14-s − 0.462·15-s + (2.30 − 4.00i)16-s + (−2.52 − 4.36i)17-s + (0.902 + 1.56i)18-s + ⋯ |
L(s) = 1 | + (−0.545 + 0.945i)2-s + (0.390 + 0.676i)3-s + (−0.0958 − 0.166i)4-s + (−0.0764 + 0.132i)5-s − 0.852·6-s + (0.804 − 0.594i)7-s − 0.882·8-s + (0.194 − 0.337i)9-s + (−0.0834 − 0.144i)10-s + (−0.837 − 1.45i)11-s + (0.0748 − 0.129i)12-s + (0.123 + 1.08i)14-s − 0.119·15-s + (0.577 − 1.00i)16-s + (−0.611 − 1.05i)17-s + (0.212 + 0.368i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1183 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.984 - 0.175i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1183 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.984 - 0.175i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.188893802\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.188893802\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 + (-2.12 + 1.57i)T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (0.771 - 1.33i)T + (-1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (-0.676 - 1.17i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (0.170 - 0.296i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (2.77 + 4.81i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (2.52 + 4.36i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.08 + 3.60i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.621 + 1.07i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 0.715T + 29T^{2} \) |
| 31 | \( 1 + (4.55 + 7.89i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-0.764 + 1.32i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 3.73T + 41T^{2} \) |
| 43 | \( 1 + 6.37T + 43T^{2} \) |
| 47 | \( 1 + (0.189 - 0.328i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (1.40 + 2.43i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-4.28 - 7.41i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (1.66 - 2.88i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (3.96 + 6.87i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 14.5T + 71T^{2} \) |
| 73 | \( 1 + (-3.72 - 6.45i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-2.80 + 4.86i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 9.99T + 83T^{2} \) |
| 89 | \( 1 + (8.06 - 13.9i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 12.1T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.420880535068381345611156349351, −8.902992530548099389553946186021, −8.162077704726045102669100179492, −7.39839587470995610935296679968, −6.74477879967079929604537038125, −5.60072930133360958097452812213, −4.77448606141830937761388215834, −3.56318026174013882295815649615, −2.76527153140264902885756433414, −0.57675858375197134021087863402,
1.63150034995618524744715460394, 1.94521587667521658415467907656, 3.03122953721144767284281226082, 4.54688512855679142659881289452, 5.38327854383024761983214206495, 6.58243740794690212000261809644, 7.52846764801724491007713396137, 8.306827789758330429630004719099, 8.827327520363542448429133037772, 9.995718449844053117872475911301