L(s) = 1 | + (−0.5 + 0.866i)2-s + (−0.499 − 0.866i)4-s + (0.5 − 0.866i)5-s + (0.5 + 0.866i)7-s + 0.999·8-s + (0.499 + 0.866i)10-s − 0.999·14-s + (−0.5 + 0.866i)16-s − 0.999·20-s + (0.5 − 0.866i)23-s + (−0.499 − 0.866i)25-s + (0.499 − 0.866i)28-s + 29-s + (−0.499 − 0.866i)32-s + 0.999·35-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.866i)2-s + (−0.499 − 0.866i)4-s + (0.5 − 0.866i)5-s + (0.5 + 0.866i)7-s + 0.999·8-s + (0.499 + 0.866i)10-s − 0.999·14-s + (−0.5 + 0.866i)16-s − 0.999·20-s + (0.5 − 0.866i)23-s + (−0.499 − 0.866i)25-s + (0.499 − 0.866i)28-s + 29-s + (−0.499 − 0.866i)32-s + 0.999·35-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1260 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.832 - 0.553i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1260 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.832 - 0.553i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9295915988\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9295915988\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 - 0.866i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.5 + 0.866i)T \) |
| 7 | \( 1 + (-0.5 - 0.866i)T \) |
good | 11 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 17 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 - T + T^{2} \) |
| 31 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 - T + T^{2} \) |
| 43 | \( 1 - T + T^{2} \) |
| 47 | \( 1 + (1 - 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + T + T^{2} \) |
| 89 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.591054549577520070570865376802, −9.058419528450012762441197264133, −8.373003335991646403874980638019, −7.75282947023654254684735516156, −6.52304395211380699632281831855, −5.87835983479194488984376770738, −5.02024759444730388166881514973, −4.41906793821484964309742847429, −2.49773641200938855230480166436, −1.24154158826693006562837466492,
1.32947016126302348961974758193, 2.50620156542947502343355588274, 3.48532056306265839853612014249, 4.40324891477538227470864901513, 5.51981119917014092880316900209, 6.82925252878520269144858618209, 7.40830812135367188343760527756, 8.263061141618735344424156152540, 9.208334238707471672239904157458, 10.04700884362416143524957849800