L(s) = 1 | − 2.82i·3-s + (4.89 + i)5-s + 8.48·7-s + 0.999·9-s + 13.8·11-s − 9.79·13-s + (2.82 − 13.8i)15-s − 19.5i·17-s + 13.8·19-s − 24i·21-s − 25.4·23-s + (22.9 + 9.79i)25-s − 28.2i·27-s − 22i·29-s + 55.4i·31-s + ⋯ |
L(s) = 1 | − 0.942i·3-s + (0.979 + 0.200i)5-s + 1.21·7-s + 0.111·9-s + 1.25·11-s − 0.753·13-s + (0.188 − 0.923i)15-s − 1.15i·17-s + 0.729·19-s − 1.14i·21-s − 1.10·23-s + (0.919 + 0.391i)25-s − 1.04i·27-s − 0.758i·29-s + 1.78i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.551 + 0.834i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1280 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.551 + 0.834i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(3.145876160\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.145876160\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-4.89 - i)T \) |
good | 3 | \( 1 + 2.82iT - 9T^{2} \) |
| 7 | \( 1 - 8.48T + 49T^{2} \) |
| 11 | \( 1 - 13.8T + 121T^{2} \) |
| 13 | \( 1 + 9.79T + 169T^{2} \) |
| 17 | \( 1 + 19.5iT - 289T^{2} \) |
| 19 | \( 1 - 13.8T + 361T^{2} \) |
| 23 | \( 1 + 25.4T + 529T^{2} \) |
| 29 | \( 1 + 22iT - 841T^{2} \) |
| 31 | \( 1 - 55.4iT - 961T^{2} \) |
| 37 | \( 1 - 48.9T + 1.36e3T^{2} \) |
| 41 | \( 1 + 22T + 1.68e3T^{2} \) |
| 43 | \( 1 - 59.3iT - 1.84e3T^{2} \) |
| 47 | \( 1 + 8.48T + 2.20e3T^{2} \) |
| 53 | \( 1 - 29.3T + 2.80e3T^{2} \) |
| 59 | \( 1 - 13.8T + 3.48e3T^{2} \) |
| 61 | \( 1 - 46iT - 3.72e3T^{2} \) |
| 67 | \( 1 + 59.3iT - 4.48e3T^{2} \) |
| 71 | \( 1 - 27.7iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 78.3iT - 5.32e3T^{2} \) |
| 79 | \( 1 - 6.24e3T^{2} \) |
| 83 | \( 1 - 76.3iT - 6.88e3T^{2} \) |
| 89 | \( 1 + 146T + 7.92e3T^{2} \) |
| 97 | \( 1 + 58.7iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.499933032268202167700698776804, −8.426889061420562905958212214413, −7.58403022847369281922070461872, −6.92790664554939513170874575757, −6.18571430528008217238575846916, −5.17092425244468525499847814463, −4.35791111000074101415964790600, −2.77971990274096894626213068468, −1.77626216620086984927337290820, −1.09334268446599956154775636220,
1.31518507967633625688422412295, 2.17426145890645585376385509350, 3.80315076817805001793510883276, 4.44571365453307665004385943114, 5.30836330888118457617310722526, 6.07010218936440260426757388001, 7.15595952474542089820711615690, 8.157699629664109905464332023163, 8.981888266652868535972932466695, 9.732226814104469913738415830607