Properties

Label 2-1350-5.4-c1-0-0
Degree $2$
Conductor $1350$
Sign $0.447 - 0.894i$
Analytic cond. $10.7798$
Root an. cond. $3.28326$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·2-s − 4-s i·7-s + i·8-s − 3·11-s + 4i·13-s − 14-s + 16-s − 2·19-s + 3i·22-s + 6i·23-s + 4·26-s + i·28-s − 6·29-s + 5·31-s i·32-s + ⋯
L(s)  = 1  − 0.707i·2-s − 0.5·4-s − 0.377i·7-s + 0.353i·8-s − 0.904·11-s + 1.10i·13-s − 0.267·14-s + 0.250·16-s − 0.458·19-s + 0.639i·22-s + 1.25i·23-s + 0.784·26-s + 0.188i·28-s − 1.11·29-s + 0.898·31-s − 0.176i·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1350 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1350\)    =    \(2 \cdot 3^{3} \cdot 5^{2}\)
Sign: $0.447 - 0.894i$
Analytic conductor: \(10.7798\)
Root analytic conductor: \(3.28326\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1350} (649, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1350,\ (\ :1/2),\ 0.447 - 0.894i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7982387923\)
\(L(\frac12)\) \(\approx\) \(0.7982387923\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + iT \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 + iT - 7T^{2} \)
11 \( 1 + 3T + 11T^{2} \)
13 \( 1 - 4iT - 13T^{2} \)
17 \( 1 - 17T^{2} \)
19 \( 1 + 2T + 19T^{2} \)
23 \( 1 - 6iT - 23T^{2} \)
29 \( 1 + 6T + 29T^{2} \)
31 \( 1 - 5T + 31T^{2} \)
37 \( 1 - 2iT - 37T^{2} \)
41 \( 1 + 6T + 41T^{2} \)
43 \( 1 - 10iT - 43T^{2} \)
47 \( 1 - 6iT - 47T^{2} \)
53 \( 1 + 9iT - 53T^{2} \)
59 \( 1 + 12T + 59T^{2} \)
61 \( 1 - 8T + 61T^{2} \)
67 \( 1 - 14iT - 67T^{2} \)
71 \( 1 + 71T^{2} \)
73 \( 1 - 7iT - 73T^{2} \)
79 \( 1 + 8T + 79T^{2} \)
83 \( 1 - 3iT - 83T^{2} \)
89 \( 1 - 18T + 89T^{2} \)
97 \( 1 + iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.823414658854538280547746605256, −9.137288100363627401041529411461, −8.194933840539761175864112400247, −7.44021300600891822192052227329, −6.46292514303513538605773681400, −5.39858804121206894893915243031, −4.51526587989759723099959846755, −3.64835465306340412037549005718, −2.54491434853310812021989086510, −1.43727115772932601495068081392, 0.32856178543528485419301007217, 2.26924076811293193760293267965, 3.36421049332788707906543866948, 4.58218442781802802213296824214, 5.40739520066832524713666981185, 6.07149121994267881153810221377, 7.06599363266214128708217466366, 7.892586595164355605479553391953, 8.492687377859773767429612702981, 9.267322431554275110838769388705

Graph of the $Z$-function along the critical line