L(s) = 1 | + (−0.5 − 0.866i)3-s + 5-s + (2.5 − 4.33i)7-s + (1 − 1.73i)9-s + (−1 − 1.73i)11-s + (−0.5 − 0.866i)15-s + (1.5 − 2.59i)17-s + (−1 + 1.73i)19-s − 5·21-s + (−2 − 3.46i)23-s − 4·25-s − 5·27-s + (3 + 5.19i)29-s + 4·31-s + (−0.999 + 1.73i)33-s + ⋯ |
L(s) = 1 | + (−0.288 − 0.499i)3-s + 0.447·5-s + (0.944 − 1.63i)7-s + (0.333 − 0.577i)9-s + (−0.301 − 0.522i)11-s + (−0.129 − 0.223i)15-s + (0.363 − 0.630i)17-s + (−0.229 + 0.397i)19-s − 1.09·21-s + (−0.417 − 0.722i)23-s − 0.800·25-s − 0.962·27-s + (0.557 + 0.964i)29-s + 0.718·31-s + (−0.174 + 0.301i)33-s + ⋯ |
Λ(s)=(=(1352s/2ΓC(s)L(s)(−0.477+0.878i)Λ(2−s)
Λ(s)=(=(1352s/2ΓC(s+1/2)L(s)(−0.477+0.878i)Λ(1−s)
Degree: |
2 |
Conductor: |
1352
= 23⋅132
|
Sign: |
−0.477+0.878i
|
Analytic conductor: |
10.7957 |
Root analytic conductor: |
3.28569 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1352(1329,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1352, ( :1/2), −0.477+0.878i)
|
Particular Values
L(1) |
≈ |
1.705765210 |
L(21) |
≈ |
1.705765210 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1 |
good | 3 | 1+(0.5+0.866i)T+(−1.5+2.59i)T2 |
| 5 | 1−T+5T2 |
| 7 | 1+(−2.5+4.33i)T+(−3.5−6.06i)T2 |
| 11 | 1+(1+1.73i)T+(−5.5+9.52i)T2 |
| 17 | 1+(−1.5+2.59i)T+(−8.5−14.7i)T2 |
| 19 | 1+(1−1.73i)T+(−9.5−16.4i)T2 |
| 23 | 1+(2+3.46i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−3−5.19i)T+(−14.5+25.1i)T2 |
| 31 | 1−4T+31T2 |
| 37 | 1+(−5.5−9.52i)T+(−18.5+32.0i)T2 |
| 41 | 1+(−4−6.92i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−0.5+0.866i)T+(−21.5−37.2i)T2 |
| 47 | 1+9T+47T2 |
| 53 | 1+12T+53T2 |
| 59 | 1+(−3+5.19i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−30.5−52.8i)T2 |
| 67 | 1+(−3−5.19i)T+(−33.5+58.0i)T2 |
| 71 | 1+(−3.5+6.06i)T+(−35.5−61.4i)T2 |
| 73 | 1−2T+73T2 |
| 79 | 1−12T+79T2 |
| 83 | 1−16T+83T2 |
| 89 | 1+(5+8.66i)T+(−44.5+77.0i)T2 |
| 97 | 1+(5−8.66i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.599525352473124127169844373811, −8.121300936278992292384728203382, −7.87726789146238762715955008572, −6.75363348897079475823065785259, −6.29573227746206999082937061923, −5.03815395643918309518748986800, −4.29108359767455476537091642877, −3.20376293241790886983210112969, −1.62712338676556952675748799845, −0.75371846909473262727840231723,
1.85693700839219984660689538115, 2.44677094516806791210642899994, 4.07814090755880214648945266389, 4.98051144552532696103142242950, 5.57644483995376312148707495966, 6.28171384778976307342254895680, 7.78651675301647908062050144506, 8.108668184087682630282890321462, 9.293951780450625961603546924698, 9.718383272404965103631726780028