Properties

Label 2-150-25.11-c3-0-2
Degree $2$
Conductor $150$
Sign $-0.379 - 0.925i$
Analytic cond. $8.85028$
Root an. cond. $2.97494$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.61 + 1.17i)2-s + (0.927 − 2.85i)3-s + (1.23 − 3.80i)4-s + (−3.72 + 10.5i)5-s + (1.85 + 5.70i)6-s + 7.73·7-s + (2.47 + 7.60i)8-s + (−7.28 − 5.29i)9-s + (−6.37 − 21.4i)10-s + (−8.25 + 6.00i)11-s + (−9.70 − 7.05i)12-s + (−32.3 − 23.5i)13-s + (−12.5 + 9.09i)14-s + (26.6 + 20.3i)15-s + (−12.9 − 9.40i)16-s + (37.6 + 115. i)17-s + ⋯
L(s)  = 1  + (−0.572 + 0.415i)2-s + (0.178 − 0.549i)3-s + (0.154 − 0.475i)4-s + (−0.332 + 0.942i)5-s + (0.126 + 0.388i)6-s + 0.417·7-s + (0.109 + 0.336i)8-s + (−0.269 − 0.195i)9-s + (−0.201 − 0.677i)10-s + (−0.226 + 0.164i)11-s + (−0.233 − 0.169i)12-s + (−0.690 − 0.501i)13-s + (−0.238 + 0.173i)14-s + (0.458 + 0.351i)15-s + (−0.202 − 0.146i)16-s + (0.537 + 1.65i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.379 - 0.925i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 150 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.379 - 0.925i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(150\)    =    \(2 \cdot 3 \cdot 5^{2}\)
Sign: $-0.379 - 0.925i$
Analytic conductor: \(8.85028\)
Root analytic conductor: \(2.97494\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{150} (61, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 150,\ (\ :3/2),\ -0.379 - 0.925i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.506302 + 0.755087i\)
\(L(\frac12)\) \(\approx\) \(0.506302 + 0.755087i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.61 - 1.17i)T \)
3 \( 1 + (-0.927 + 2.85i)T \)
5 \( 1 + (3.72 - 10.5i)T \)
good7 \( 1 - 7.73T + 343T^{2} \)
11 \( 1 + (8.25 - 6.00i)T + (411. - 1.26e3i)T^{2} \)
13 \( 1 + (32.3 + 23.5i)T + (678. + 2.08e3i)T^{2} \)
17 \( 1 + (-37.6 - 115. i)T + (-3.97e3 + 2.88e3i)T^{2} \)
19 \( 1 + (-36.2 - 111. i)T + (-5.54e3 + 4.03e3i)T^{2} \)
23 \( 1 + (69.9 - 50.7i)T + (3.75e3 - 1.15e4i)T^{2} \)
29 \( 1 + (44.9 - 138. i)T + (-1.97e4 - 1.43e4i)T^{2} \)
31 \( 1 + (-73.3 - 225. i)T + (-2.41e4 + 1.75e4i)T^{2} \)
37 \( 1 + (105. + 76.6i)T + (1.56e4 + 4.81e4i)T^{2} \)
41 \( 1 + (-157. - 114. i)T + (2.12e4 + 6.55e4i)T^{2} \)
43 \( 1 + 193.T + 7.95e4T^{2} \)
47 \( 1 + (15.6 - 48.0i)T + (-8.39e4 - 6.10e4i)T^{2} \)
53 \( 1 + (-127. + 392. i)T + (-1.20e5 - 8.75e4i)T^{2} \)
59 \( 1 + (-413. - 300. i)T + (6.34e4 + 1.95e5i)T^{2} \)
61 \( 1 + (-639. + 464. i)T + (7.01e4 - 2.15e5i)T^{2} \)
67 \( 1 + (172. + 531. i)T + (-2.43e5 + 1.76e5i)T^{2} \)
71 \( 1 + (16.6 - 51.2i)T + (-2.89e5 - 2.10e5i)T^{2} \)
73 \( 1 + (-358. + 260. i)T + (1.20e5 - 3.69e5i)T^{2} \)
79 \( 1 + (-36.2 + 111. i)T + (-3.98e5 - 2.89e5i)T^{2} \)
83 \( 1 + (93.1 + 286. i)T + (-4.62e5 + 3.36e5i)T^{2} \)
89 \( 1 + (959. - 697. i)T + (2.17e5 - 6.70e5i)T^{2} \)
97 \( 1 + (-65.7 + 202. i)T + (-7.38e5 - 5.36e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.75721440412295115601755469436, −11.84016402134632223773387983529, −10.61443493223387030396043045673, −9.944806768486370132808232779375, −8.263443305154068163558279714326, −7.75521231854936540635807397854, −6.67100037436265141130207168008, −5.50771188256495835601126014379, −3.47516299108681845858089918949, −1.75031635394400088137280190157, 0.51775916447468740014259136599, 2.54251902550737608893983255800, 4.26914871409705391199190832763, 5.24407400102566501788303138951, 7.27669542000503866446589325764, 8.258254507189484937021939591644, 9.285864954462632778319580288467, 9.912782880301713695752282232240, 11.46291455414893163311670957721, 11.79670168303764992241998015091

Graph of the $Z$-function along the critical line