Properties

Label 2-152-152.3-c3-0-13
Degree $2$
Conductor $152$
Sign $0.998 + 0.0568i$
Analytic cond. $8.96829$
Root an. cond. $2.99471$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−2.59 − 1.11i)2-s + (0.142 + 0.390i)3-s + (5.51 + 5.79i)4-s + (−20.2 − 3.57i)5-s + (0.0661 − 1.17i)6-s + (−16.1 + 9.30i)7-s + (−7.86 − 21.2i)8-s + (20.5 − 17.2i)9-s + (48.7 + 31.9i)10-s + (4.07 − 7.05i)11-s + (−1.48 + 2.98i)12-s + (26.9 + 9.81i)13-s + (52.2 − 6.20i)14-s + (−1.48 − 8.43i)15-s + (−3.23 + 63.9i)16-s + (32.2 + 27.0i)17-s + ⋯
L(s)  = 1  + (−0.918 − 0.394i)2-s + (0.0273 + 0.0752i)3-s + (0.689 + 0.724i)4-s + (−1.81 − 0.319i)5-s + (0.00450 − 0.0799i)6-s + (−0.870 + 0.502i)7-s + (−0.347 − 0.937i)8-s + (0.761 − 0.638i)9-s + (1.54 + 1.00i)10-s + (0.111 − 0.193i)11-s + (−0.0356 + 0.0716i)12-s + (0.575 + 0.209i)13-s + (0.997 − 0.118i)14-s + (−0.0256 − 0.145i)15-s + (−0.0504 + 0.998i)16-s + (0.460 + 0.386i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.998 + 0.0568i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 152 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.998 + 0.0568i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(152\)    =    \(2^{3} \cdot 19\)
Sign: $0.998 + 0.0568i$
Analytic conductor: \(8.96829\)
Root analytic conductor: \(2.99471\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{152} (3, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 152,\ (\ :3/2),\ 0.998 + 0.0568i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.678173 - 0.0192948i\)
\(L(\frac12)\) \(\approx\) \(0.678173 - 0.0192948i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (2.59 + 1.11i)T \)
19 \( 1 + (57.1 - 59.9i)T \)
good3 \( 1 + (-0.142 - 0.390i)T + (-20.6 + 17.3i)T^{2} \)
5 \( 1 + (20.2 + 3.57i)T + (117. + 42.7i)T^{2} \)
7 \( 1 + (16.1 - 9.30i)T + (171.5 - 297. i)T^{2} \)
11 \( 1 + (-4.07 + 7.05i)T + (-665.5 - 1.15e3i)T^{2} \)
13 \( 1 + (-26.9 - 9.81i)T + (1.68e3 + 1.41e3i)T^{2} \)
17 \( 1 + (-32.2 - 27.0i)T + (853. + 4.83e3i)T^{2} \)
23 \( 1 + (-179. + 31.7i)T + (1.14e4 - 4.16e3i)T^{2} \)
29 \( 1 + (-15.3 + 12.9i)T + (4.23e3 - 2.40e4i)T^{2} \)
31 \( 1 + (-8.46 - 14.6i)T + (-1.48e4 + 2.57e4i)T^{2} \)
37 \( 1 - 235.T + 5.06e4T^{2} \)
41 \( 1 + (110. + 303. i)T + (-5.27e4 + 4.43e4i)T^{2} \)
43 \( 1 + (-12.2 + 69.3i)T + (-7.47e4 - 2.71e4i)T^{2} \)
47 \( 1 + (-338. - 403. i)T + (-1.80e4 + 1.02e5i)T^{2} \)
53 \( 1 + (82.4 + 467. i)T + (-1.39e5 + 5.09e4i)T^{2} \)
59 \( 1 + (45.7 - 54.5i)T + (-3.56e4 - 2.02e5i)T^{2} \)
61 \( 1 + (709. - 125. i)T + (2.13e5 - 7.76e4i)T^{2} \)
67 \( 1 + (-430. - 513. i)T + (-5.22e4 + 2.96e5i)T^{2} \)
71 \( 1 + (127. - 724. i)T + (-3.36e5 - 1.22e5i)T^{2} \)
73 \( 1 + (-407. + 148. i)T + (2.98e5 - 2.50e5i)T^{2} \)
79 \( 1 + (-955. + 347. i)T + (3.77e5 - 3.16e5i)T^{2} \)
83 \( 1 + (122. + 211. i)T + (-2.85e5 + 4.95e5i)T^{2} \)
89 \( 1 + (327. - 899. i)T + (-5.40e5 - 4.53e5i)T^{2} \)
97 \( 1 + (-741. + 884. i)T + (-1.58e5 - 8.98e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.47242120917577168078170943752, −11.48216026769049436067712767995, −10.54348832183299442774668961378, −9.245516757123247126939581987089, −8.523261885933464425184423989711, −7.45665174758246622047006495319, −6.43958173262325126729117684310, −4.10468480294144206484233567143, −3.25928993199813355347554086182, −0.842915964013817571501859472798, 0.69719634271811017733697512462, 3.15619552379525478994567715315, 4.63564643177794218575895333046, 6.66197984294798114187753080227, 7.32942152652500584967640448610, 8.133556119145631081531788294112, 9.356875701476139144005135480703, 10.62694958160685911841427725242, 11.16287137275724425904655330702, 12.36776790592187223279337529782

Graph of the $Z$-function along the critical line