L(s) = 1 | + (1.5 + 2.59i)3-s − 11.8i·5-s + (−19.2 − 11.1i)7-s + (−4.5 + 7.79i)9-s + (−49.0 + 28.3i)11-s + (−28.0 + 37.5i)13-s + (30.9 − 17.8i)15-s + (20.5 − 35.6i)17-s + (−99.4 − 57.4i)19-s − 66.6i·21-s + (−33.8 − 58.6i)23-s − 16.5·25-s − 27·27-s + (67.1 + 116. i)29-s − 265. i·31-s + ⋯ |
L(s) = 1 | + (0.288 + 0.499i)3-s − 1.06i·5-s + (−1.03 − 0.600i)7-s + (−0.166 + 0.288i)9-s + (−1.34 + 0.776i)11-s + (−0.598 + 0.801i)13-s + (0.532 − 0.307i)15-s + (0.293 − 0.508i)17-s + (−1.20 − 0.693i)19-s − 0.692i·21-s + (−0.306 − 0.531i)23-s − 0.132·25-s − 0.192·27-s + (0.429 + 0.744i)29-s − 1.54i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 156 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.923 + 0.383i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 156 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.923 + 0.383i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.0681430 - 0.342227i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0681430 - 0.342227i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.5 - 2.59i)T \) |
| 13 | \( 1 + (28.0 - 37.5i)T \) |
good | 5 | \( 1 + 11.8iT - 125T^{2} \) |
| 7 | \( 1 + (19.2 + 11.1i)T + (171.5 + 297. i)T^{2} \) |
| 11 | \( 1 + (49.0 - 28.3i)T + (665.5 - 1.15e3i)T^{2} \) |
| 17 | \( 1 + (-20.5 + 35.6i)T + (-2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (99.4 + 57.4i)T + (3.42e3 + 5.94e3i)T^{2} \) |
| 23 | \( 1 + (33.8 + 58.6i)T + (-6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 + (-67.1 - 116. i)T + (-1.21e4 + 2.11e4i)T^{2} \) |
| 31 | \( 1 + 265. iT - 2.97e4T^{2} \) |
| 37 | \( 1 + (60.0 - 34.6i)T + (2.53e4 - 4.38e4i)T^{2} \) |
| 41 | \( 1 + (99.0 - 57.2i)T + (3.44e4 - 5.96e4i)T^{2} \) |
| 43 | \( 1 + (-153. + 266. i)T + (-3.97e4 - 6.88e4i)T^{2} \) |
| 47 | \( 1 - 518. iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 304.T + 1.48e5T^{2} \) |
| 59 | \( 1 + (608. + 351. i)T + (1.02e5 + 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-324. + 562. i)T + (-1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (622. - 359. i)T + (1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 + (-782. - 451. i)T + (1.78e5 + 3.09e5i)T^{2} \) |
| 73 | \( 1 + 562. iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 530.T + 4.93e5T^{2} \) |
| 83 | \( 1 - 986. iT - 5.71e5T^{2} \) |
| 89 | \( 1 + (271. - 156. i)T + (3.52e5 - 6.10e5i)T^{2} \) |
| 97 | \( 1 + (120. + 69.5i)T + (4.56e5 + 7.90e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.36545759549883287782270115675, −10.79583597529669144567126954787, −9.854060851407813824004675382193, −9.139441971227137319028454329180, −7.929024435895338178212357791152, −6.73352810428569614319637625662, −5.07508647671346409852654154993, −4.23762912723302830297104910332, −2.50438578849629805766591237598, −0.14625104279669167634750769432,
2.52800787403769465469585627819, 3.32701636147664394754716206633, 5.61152269980539892657256239224, 6.49068326972838892968519756046, 7.67533212232075043105879321638, 8.623443492291399811647328070140, 10.14288655224837100589656174505, 10.63961858868116878290135619134, 12.15540750039775824348842829950, 12.88640963354841638479906791062