L(s) = 1 | + (1.5 + 2.59i)3-s − 11.8i·5-s + (−19.2 − 11.1i)7-s + (−4.5 + 7.79i)9-s + (−49.0 + 28.3i)11-s + (−28.0 + 37.5i)13-s + (30.9 − 17.8i)15-s + (20.5 − 35.6i)17-s + (−99.4 − 57.4i)19-s − 66.6i·21-s + (−33.8 − 58.6i)23-s − 16.5·25-s − 27·27-s + (67.1 + 116. i)29-s − 265. i·31-s + ⋯ |
L(s) = 1 | + (0.288 + 0.499i)3-s − 1.06i·5-s + (−1.03 − 0.600i)7-s + (−0.166 + 0.288i)9-s + (−1.34 + 0.776i)11-s + (−0.598 + 0.801i)13-s + (0.532 − 0.307i)15-s + (0.293 − 0.508i)17-s + (−1.20 − 0.693i)19-s − 0.692i·21-s + (−0.306 − 0.531i)23-s − 0.132·25-s − 0.192·27-s + (0.429 + 0.744i)29-s − 1.54i·31-s + ⋯ |
Λ(s)=(=(156s/2ΓC(s)L(s)(−0.923+0.383i)Λ(4−s)
Λ(s)=(=(156s/2ΓC(s+3/2)L(s)(−0.923+0.383i)Λ(1−s)
Degree: |
2 |
Conductor: |
156
= 22⋅3⋅13
|
Sign: |
−0.923+0.383i
|
Analytic conductor: |
9.20429 |
Root analytic conductor: |
3.03385 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ156(49,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 156, ( :3/2), −0.923+0.383i)
|
Particular Values
L(2) |
≈ |
0.0681430−0.342227i |
L(21) |
≈ |
0.0681430−0.342227i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−1.5−2.59i)T |
| 13 | 1+(28.0−37.5i)T |
good | 5 | 1+11.8iT−125T2 |
| 7 | 1+(19.2+11.1i)T+(171.5+297.i)T2 |
| 11 | 1+(49.0−28.3i)T+(665.5−1.15e3i)T2 |
| 17 | 1+(−20.5+35.6i)T+(−2.45e3−4.25e3i)T2 |
| 19 | 1+(99.4+57.4i)T+(3.42e3+5.94e3i)T2 |
| 23 | 1+(33.8+58.6i)T+(−6.08e3+1.05e4i)T2 |
| 29 | 1+(−67.1−116.i)T+(−1.21e4+2.11e4i)T2 |
| 31 | 1+265.iT−2.97e4T2 |
| 37 | 1+(60.0−34.6i)T+(2.53e4−4.38e4i)T2 |
| 41 | 1+(99.0−57.2i)T+(3.44e4−5.96e4i)T2 |
| 43 | 1+(−153.+266.i)T+(−3.97e4−6.88e4i)T2 |
| 47 | 1−518.iT−1.03e5T2 |
| 53 | 1−304.T+1.48e5T2 |
| 59 | 1+(608.+351.i)T+(1.02e5+1.77e5i)T2 |
| 61 | 1+(−324.+562.i)T+(−1.13e5−1.96e5i)T2 |
| 67 | 1+(622.−359.i)T+(1.50e5−2.60e5i)T2 |
| 71 | 1+(−782.−451.i)T+(1.78e5+3.09e5i)T2 |
| 73 | 1+562.iT−3.89e5T2 |
| 79 | 1−530.T+4.93e5T2 |
| 83 | 1−986.iT−5.71e5T2 |
| 89 | 1+(271.−156.i)T+(3.52e5−6.10e5i)T2 |
| 97 | 1+(120.+69.5i)T+(4.56e5+7.90e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.36545759549883287782270115675, −10.79583597529669144567126954787, −9.854060851407813824004675382193, −9.139441971227137319028454329180, −7.929024435895338178212357791152, −6.73352810428569614319637625662, −5.07508647671346409852654154993, −4.23762912723302830297104910332, −2.50438578849629805766591237598, −0.14625104279669167634750769432,
2.52800787403769465469585627819, 3.32701636147664394754716206633, 5.61152269980539892657256239224, 6.49068326972838892968519756046, 7.67533212232075043105879321638, 8.623443492291399811647328070140, 10.14288655224837100589656174505, 10.63961858868116878290135619134, 12.15540750039775824348842829950, 12.88640963354841638479906791062