L(s) = 1 | − 10.5i·3-s + (−24.9 + 1.70i)5-s − 26.0·7-s − 30.0·9-s + 94.0·11-s − 236.·13-s + (18.0 + 262. i)15-s + 398. i·17-s − 98.0·19-s + 274. i·21-s + 490.·23-s + (619. − 85.2i)25-s − 537. i·27-s + 1.45e3i·29-s + 442. i·31-s + ⋯ |
L(s) = 1 | − 1.17i·3-s + (−0.997 + 0.0683i)5-s − 0.530·7-s − 0.370·9-s + 0.776·11-s − 1.39·13-s + (0.0800 + 1.16i)15-s + 1.37i·17-s − 0.271·19-s + 0.621i·21-s + 0.926·23-s + (0.990 − 0.136i)25-s − 0.736i·27-s + 1.72i·29-s + 0.460i·31-s + ⋯ |
Λ(s)=(=(160s/2ΓC(s)L(s)(0.256−0.966i)Λ(5−s)
Λ(s)=(=(160s/2ΓC(s+2)L(s)(0.256−0.966i)Λ(1−s)
Degree: |
2 |
Conductor: |
160
= 25⋅5
|
Sign: |
0.256−0.966i
|
Analytic conductor: |
16.5391 |
Root analytic conductor: |
4.06684 |
Motivic weight: |
4 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ160(79,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 160, ( :2), 0.256−0.966i)
|
Particular Values
L(25) |
≈ |
0.463039+0.356115i |
L(21) |
≈ |
0.463039+0.356115i |
L(3) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(24.9−1.70i)T |
good | 3 | 1+10.5iT−81T2 |
| 7 | 1+26.0T+2.40e3T2 |
| 11 | 1−94.0T+1.46e4T2 |
| 13 | 1+236.T+2.85e4T2 |
| 17 | 1−398.iT−8.35e4T2 |
| 19 | 1+98.0T+1.30e5T2 |
| 23 | 1−490.T+2.79e5T2 |
| 29 | 1−1.45e3iT−7.07e5T2 |
| 31 | 1−442.iT−9.23e5T2 |
| 37 | 1−1.21e3T+1.87e6T2 |
| 41 | 1−336.T+2.82e6T2 |
| 43 | 1−1.73e3iT−3.41e6T2 |
| 47 | 1+1.94e3T+4.87e6T2 |
| 53 | 1+2.00e3T+7.89e6T2 |
| 59 | 1+6.52e3T+1.21e7T2 |
| 61 | 1−4.99e3iT−1.38e7T2 |
| 67 | 1−5.38e3iT−2.01e7T2 |
| 71 | 1+6.60e3iT−2.54e7T2 |
| 73 | 1+270.iT−2.83e7T2 |
| 79 | 1+1.07e3iT−3.89e7T2 |
| 83 | 1+8.97e3iT−4.74e7T2 |
| 89 | 1+3.55e3T+6.27e7T2 |
| 97 | 1−8.43e3iT−8.85e7T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.59671100483607205454716357022, −11.70761947148504294037014586729, −10.55100761564942250848321394748, −9.174805693537658727160759043705, −8.005303677852058131404659660228, −7.12986057950396900208154328190, −6.38358413737659119532289845706, −4.56812972259706020653449365419, −3.09874432652488663315335688618, −1.37304727610956679034331558212,
0.23840793402052761850912064816, 2.96228146386821394436950936226, 4.18846137726065917426131484508, 4.97380094307882125875982270700, 6.75152598901803664652428676622, 7.81062601656837079462888831173, 9.338427991668426263347252931148, 9.697024922329466916211159748058, 11.04099737893628821142468935835, 11.82104178106900614628281461436