L(s) = 1 | − 10.5i·3-s + (−24.9 + 1.70i)5-s − 26.0·7-s − 30.0·9-s + 94.0·11-s − 236.·13-s + (18.0 + 262. i)15-s + 398. i·17-s − 98.0·19-s + 274. i·21-s + 490.·23-s + (619. − 85.2i)25-s − 537. i·27-s + 1.45e3i·29-s + 442. i·31-s + ⋯ |
L(s) = 1 | − 1.17i·3-s + (−0.997 + 0.0683i)5-s − 0.530·7-s − 0.370·9-s + 0.776·11-s − 1.39·13-s + (0.0800 + 1.16i)15-s + 1.37i·17-s − 0.271·19-s + 0.621i·21-s + 0.926·23-s + (0.990 − 0.136i)25-s − 0.736i·27-s + 1.72i·29-s + 0.460i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.256 - 0.966i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (0.256 - 0.966i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{5}{2})\) |
\(\approx\) |
\(0.463039 + 0.356115i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.463039 + 0.356115i\) |
\(L(3)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (24.9 - 1.70i)T \) |
good | 3 | \( 1 + 10.5iT - 81T^{2} \) |
| 7 | \( 1 + 26.0T + 2.40e3T^{2} \) |
| 11 | \( 1 - 94.0T + 1.46e4T^{2} \) |
| 13 | \( 1 + 236.T + 2.85e4T^{2} \) |
| 17 | \( 1 - 398. iT - 8.35e4T^{2} \) |
| 19 | \( 1 + 98.0T + 1.30e5T^{2} \) |
| 23 | \( 1 - 490.T + 2.79e5T^{2} \) |
| 29 | \( 1 - 1.45e3iT - 7.07e5T^{2} \) |
| 31 | \( 1 - 442. iT - 9.23e5T^{2} \) |
| 37 | \( 1 - 1.21e3T + 1.87e6T^{2} \) |
| 41 | \( 1 - 336.T + 2.82e6T^{2} \) |
| 43 | \( 1 - 1.73e3iT - 3.41e6T^{2} \) |
| 47 | \( 1 + 1.94e3T + 4.87e6T^{2} \) |
| 53 | \( 1 + 2.00e3T + 7.89e6T^{2} \) |
| 59 | \( 1 + 6.52e3T + 1.21e7T^{2} \) |
| 61 | \( 1 - 4.99e3iT - 1.38e7T^{2} \) |
| 67 | \( 1 - 5.38e3iT - 2.01e7T^{2} \) |
| 71 | \( 1 + 6.60e3iT - 2.54e7T^{2} \) |
| 73 | \( 1 + 270. iT - 2.83e7T^{2} \) |
| 79 | \( 1 + 1.07e3iT - 3.89e7T^{2} \) |
| 83 | \( 1 + 8.97e3iT - 4.74e7T^{2} \) |
| 89 | \( 1 + 3.55e3T + 6.27e7T^{2} \) |
| 97 | \( 1 - 8.43e3iT - 8.85e7T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.59671100483607205454716357022, −11.70761947148504294037014586729, −10.55100761564942250848321394748, −9.174805693537658727160759043705, −8.005303677852058131404659660228, −7.12986057950396900208154328190, −6.38358413737659119532289845706, −4.56812972259706020653449365419, −3.09874432652488663315335688618, −1.37304727610956679034331558212,
0.23840793402052761850912064816, 2.96228146386821394436950936226, 4.18846137726065917426131484508, 4.97380094307882125875982270700, 6.75152598901803664652428676622, 7.81062601656837079462888831173, 9.338427991668426263347252931148, 9.697024922329466916211159748058, 11.04099737893628821142468935835, 11.82104178106900614628281461436