L(s) = 1 | − 5.60·2-s − 7.98·3-s + 23.4·4-s − 5.27·5-s + 44.7·6-s + 7·7-s − 86.7·8-s + 36.7·9-s + 29.5·10-s − 50.0·11-s − 187.·12-s − 60.3·13-s − 39.2·14-s + 42.0·15-s + 298.·16-s − 87.5·17-s − 206.·18-s − 23.8·19-s − 123.·20-s − 55.8·21-s + 281.·22-s + 23·23-s + 692.·24-s − 97.2·25-s + 338.·26-s − 77.8·27-s + 164.·28-s + ⋯ |
L(s) = 1 | − 1.98·2-s − 1.53·3-s + 2.93·4-s − 0.471·5-s + 3.04·6-s + 0.377·7-s − 3.83·8-s + 1.36·9-s + 0.934·10-s − 1.37·11-s − 4.50·12-s − 1.28·13-s − 0.749·14-s + 0.724·15-s + 4.67·16-s − 1.24·17-s − 2.69·18-s − 0.287·19-s − 1.38·20-s − 0.580·21-s + 2.72·22-s + 0.208·23-s + 5.89·24-s − 0.777·25-s + 2.55·26-s − 0.554·27-s + 1.10·28-s + ⋯ |
Λ(s)=(=(161s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(161s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
0.1305431716 |
L(21) |
≈ |
0.1305431716 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1−7T |
| 23 | 1−23T |
good | 2 | 1+5.60T+8T2 |
| 3 | 1+7.98T+27T2 |
| 5 | 1+5.27T+125T2 |
| 11 | 1+50.0T+1.33e3T2 |
| 13 | 1+60.3T+2.19e3T2 |
| 17 | 1+87.5T+4.91e3T2 |
| 19 | 1+23.8T+6.85e3T2 |
| 29 | 1−102.T+2.43e4T2 |
| 31 | 1+118.T+2.97e4T2 |
| 37 | 1−215.T+5.06e4T2 |
| 41 | 1−43.5T+6.89e4T2 |
| 43 | 1+165.T+7.95e4T2 |
| 47 | 1+54.1T+1.03e5T2 |
| 53 | 1+228.T+1.48e5T2 |
| 59 | 1−606.T+2.05e5T2 |
| 61 | 1+752.T+2.26e5T2 |
| 67 | 1−358.T+3.00e5T2 |
| 71 | 1−699.T+3.57e5T2 |
| 73 | 1−255.T+3.89e5T2 |
| 79 | 1−1.32e3T+4.93e5T2 |
| 83 | 1+43.6T+5.71e5T2 |
| 89 | 1−896.T+7.04e5T2 |
| 97 | 1−56.3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.84127664173250162531695891730, −11.08834025310922745318875879325, −10.52341721369445726007278311689, −9.560670816209608978735223614493, −8.167689947374689944652251870027, −7.36008133627449215169925413512, −6.37617335821426044812059421537, −5.08659949497351894994538905413, −2.29320278579173792343394336858, −0.38935439294581919508885722813,
0.38935439294581919508885722813, 2.29320278579173792343394336858, 5.08659949497351894994538905413, 6.37617335821426044812059421537, 7.36008133627449215169925413512, 8.167689947374689944652251870027, 9.560670816209608978735223614493, 10.52341721369445726007278311689, 11.08834025310922745318875879325, 11.84127664173250162531695891730