L(s) = 1 | + (1.22 − 0.707i)2-s + (0.999 − 1.73i)4-s + (3.67 + 2.12i)5-s + (2 + 3.46i)7-s − 2.82i·8-s + 6·10-s + (14.6 − 8.48i)11-s + (−4 + 6.92i)13-s + (4.89 + 2.82i)14-s + (−2.00 − 3.46i)16-s − 12.7i·17-s − 16·19-s + (7.34 − 4.24i)20-s + (12 − 20.7i)22-s + (14.6 + 8.48i)23-s + ⋯ |
L(s) = 1 | + (0.612 − 0.353i)2-s + (0.249 − 0.433i)4-s + (0.734 + 0.424i)5-s + (0.285 + 0.494i)7-s − 0.353i·8-s + 0.600·10-s + (1.33 − 0.771i)11-s + (−0.307 + 0.532i)13-s + (0.349 + 0.202i)14-s + (−0.125 − 0.216i)16-s − 0.748i·17-s − 0.842·19-s + (0.367 − 0.212i)20-s + (0.545 − 0.944i)22-s + (0.638 + 0.368i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.939 + 0.342i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.939 + 0.342i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(2.31063 - 0.407427i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.31063 - 0.407427i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.22 + 0.707i)T \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (-3.67 - 2.12i)T + (12.5 + 21.6i)T^{2} \) |
| 7 | \( 1 + (-2 - 3.46i)T + (-24.5 + 42.4i)T^{2} \) |
| 11 | \( 1 + (-14.6 + 8.48i)T + (60.5 - 104. i)T^{2} \) |
| 13 | \( 1 + (4 - 6.92i)T + (-84.5 - 146. i)T^{2} \) |
| 17 | \( 1 + 12.7iT - 289T^{2} \) |
| 19 | \( 1 + 16T + 361T^{2} \) |
| 23 | \( 1 + (-14.6 - 8.48i)T + (264.5 + 458. i)T^{2} \) |
| 29 | \( 1 + (-3.67 + 2.12i)T + (420.5 - 728. i)T^{2} \) |
| 31 | \( 1 + (22 - 38.1i)T + (-480.5 - 832. i)T^{2} \) |
| 37 | \( 1 + 34T + 1.36e3T^{2} \) |
| 41 | \( 1 + (40.4 + 23.3i)T + (840.5 + 1.45e3i)T^{2} \) |
| 43 | \( 1 + (-20 - 34.6i)T + (-924.5 + 1.60e3i)T^{2} \) |
| 47 | \( 1 + (73.4 - 42.4i)T + (1.10e3 - 1.91e3i)T^{2} \) |
| 53 | \( 1 - 38.1iT - 2.80e3T^{2} \) |
| 59 | \( 1 + (29.3 + 16.9i)T + (1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 + (25 + 43.3i)T + (-1.86e3 + 3.22e3i)T^{2} \) |
| 67 | \( 1 + (4 - 6.92i)T + (-2.24e3 - 3.88e3i)T^{2} \) |
| 71 | \( 1 + 50.9iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 16T + 5.32e3T^{2} \) |
| 79 | \( 1 + (-38 - 65.8i)T + (-3.12e3 + 5.40e3i)T^{2} \) |
| 83 | \( 1 + (-102. + 59.3i)T + (3.44e3 - 5.96e3i)T^{2} \) |
| 89 | \( 1 - 12.7iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (88 + 152. i)T + (-4.70e3 + 8.14e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.49205440797676868985275391665, −11.63082769185746127933212200686, −10.80248132310668171127907941617, −9.573560809867613060311278434282, −8.727287624815488222493534994112, −6.90486468172323226368728828864, −6.07535911693213322830452563462, −4.82377070063963437675771575990, −3.28770246934692631876822675452, −1.79964609406910535143879502568,
1.79877935892192256795035608831, 3.85086579071850667810935227774, 4.97318677650644879623271920543, 6.20889367143516985852749912517, 7.20640416515618152299617012085, 8.526418836284378476621410743676, 9.612768128500410158044132479966, 10.72142816059755379748956270824, 11.95787659005491752520343431562, 12.85376447201395744750820805326