L(s) = 1 | + (1.5 − 0.866i)3-s + (−4.68 − 2.70i)5-s + (−6.12 − 3.38i)7-s + (1.5 − 2.59i)9-s + (−5.26 − 9.12i)11-s − 12.0i·13-s − 9.36·15-s + (−20.8 + 12.0i)17-s + (30.9 + 17.8i)19-s + (−12.1 + 0.234i)21-s + (20.6 − 35.7i)23-s + (2.11 + 3.65i)25-s − 5.19i·27-s − 28.6·29-s + (−4.50 + 2.59i)31-s + ⋯ |
L(s) = 1 | + (0.5 − 0.288i)3-s + (−0.936 − 0.540i)5-s + (−0.875 − 0.483i)7-s + (0.166 − 0.288i)9-s + (−0.478 − 0.829i)11-s − 0.925i·13-s − 0.624·15-s + (−1.22 + 0.707i)17-s + (1.62 + 0.939i)19-s + (−0.577 + 0.0111i)21-s + (0.898 − 1.55i)23-s + (0.0844 + 0.146i)25-s − 0.192i·27-s − 0.988·29-s + (−0.145 + 0.0838i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.589 + 0.807i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.589 + 0.807i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.445548 - 0.877352i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.445548 - 0.877352i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.5 + 0.866i)T \) |
| 7 | \( 1 + (6.12 + 3.38i)T \) |
good | 5 | \( 1 + (4.68 + 2.70i)T + (12.5 + 21.6i)T^{2} \) |
| 11 | \( 1 + (5.26 + 9.12i)T + (-60.5 + 104. i)T^{2} \) |
| 13 | \( 1 + 12.0iT - 169T^{2} \) |
| 17 | \( 1 + (20.8 - 12.0i)T + (144.5 - 250. i)T^{2} \) |
| 19 | \( 1 + (-30.9 - 17.8i)T + (180.5 + 312. i)T^{2} \) |
| 23 | \( 1 + (-20.6 + 35.7i)T + (-264.5 - 458. i)T^{2} \) |
| 29 | \( 1 + 28.6T + 841T^{2} \) |
| 31 | \( 1 + (4.50 - 2.59i)T + (480.5 - 832. i)T^{2} \) |
| 37 | \( 1 + (-1.90 + 3.30i)T + (-684.5 - 1.18e3i)T^{2} \) |
| 41 | \( 1 + 9.20iT - 1.68e3T^{2} \) |
| 43 | \( 1 - 54.2T + 1.84e3T^{2} \) |
| 47 | \( 1 + (-14.3 - 8.27i)T + (1.10e3 + 1.91e3i)T^{2} \) |
| 53 | \( 1 + (9.58 + 16.5i)T + (-1.40e3 + 2.43e3i)T^{2} \) |
| 59 | \( 1 + (-10.8 + 6.25i)T + (1.74e3 - 3.01e3i)T^{2} \) |
| 61 | \( 1 + (-84.1 - 48.5i)T + (1.86e3 + 3.22e3i)T^{2} \) |
| 67 | \( 1 + (0.499 + 0.864i)T + (-2.24e3 + 3.88e3i)T^{2} \) |
| 71 | \( 1 + 14.8T + 5.04e3T^{2} \) |
| 73 | \( 1 + (51.0 - 29.5i)T + (2.66e3 - 4.61e3i)T^{2} \) |
| 79 | \( 1 + (-50.7 + 87.9i)T + (-3.12e3 - 5.40e3i)T^{2} \) |
| 83 | \( 1 - 22.7iT - 6.88e3T^{2} \) |
| 89 | \( 1 + (98.7 + 57.0i)T + (3.96e3 + 6.85e3i)T^{2} \) |
| 97 | \( 1 + 153. iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.54756719366440903848479630961, −11.21680424807017569627479513778, −10.23052538313009480450561631687, −8.927073639129785085529226473811, −8.098505900131915285248357441263, −7.16507819235212927907687155811, −5.76662888254332596781966825237, −4.10922078065697510283257994864, −3.02992347569008823257908954059, −0.56211963567798624412200170884,
2.61153502811589543929399640780, 3.76277017503891866087337415519, 5.14887514539449677988197920933, 6.97942906775804468715637002291, 7.48295114251052880975539001698, 9.177640950972331515151612100115, 9.540037190010227500391634348505, 11.12295558314292436880569364538, 11.71934736761625420456351754239, 13.02142145194601176423425751278