L(s) = 1 | + (0.609 − 2.27i)2-s + (2.51 + 4.35i)3-s + (−1.33 − 0.770i)4-s + (−1.10 − 1.10i)5-s + (11.4 − 3.06i)6-s + (1.70 + 6.34i)7-s + (4.09 − 4.09i)8-s + (−8.11 + 14.0i)9-s + (−3.19 + 1.84i)10-s + (−1.12 − 0.301i)11-s − 7.74i·12-s + 15.4·14-s + (2.04 − 7.61i)15-s + (−9.89 − 17.1i)16-s + (21.4 + 12.3i)17-s + (27.0 + 27.0i)18-s + ⋯ |
L(s) = 1 | + (0.304 − 1.13i)2-s + (0.837 + 1.45i)3-s + (−0.333 − 0.192i)4-s + (−0.221 − 0.221i)5-s + (1.90 − 0.510i)6-s + (0.243 + 0.907i)7-s + (0.511 − 0.511i)8-s + (−0.901 + 1.56i)9-s + (−0.319 + 0.184i)10-s + (−0.102 − 0.0273i)11-s − 0.645i·12-s + 1.10·14-s + (0.136 − 0.507i)15-s + (−0.618 − 1.07i)16-s + (1.26 + 0.728i)17-s + (1.50 + 1.50i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.996 - 0.0816i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.996 - 0.0816i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(2.31883 + 0.0948311i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.31883 + 0.0948311i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 13 | \( 1 \) |
good | 2 | \( 1 + (-0.609 + 2.27i)T + (-3.46 - 2i)T^{2} \) |
| 3 | \( 1 + (-2.51 - 4.35i)T + (-4.5 + 7.79i)T^{2} \) |
| 5 | \( 1 + (1.10 + 1.10i)T + 25iT^{2} \) |
| 7 | \( 1 + (-1.70 - 6.34i)T + (-42.4 + 24.5i)T^{2} \) |
| 11 | \( 1 + (1.12 + 0.301i)T + (104. + 60.5i)T^{2} \) |
| 17 | \( 1 + (-21.4 - 12.3i)T + (144.5 + 250. i)T^{2} \) |
| 19 | \( 1 + (0.650 - 0.174i)T + (312. - 180.5i)T^{2} \) |
| 23 | \( 1 + (-1.92 + 1.11i)T + (264.5 - 458. i)T^{2} \) |
| 29 | \( 1 + (9.58 + 16.6i)T + (-420.5 + 728. i)T^{2} \) |
| 31 | \( 1 + (40.7 + 40.7i)T + 961iT^{2} \) |
| 37 | \( 1 + (-3.84 - 1.02i)T + (1.18e3 + 684.5i)T^{2} \) |
| 41 | \( 1 + (-3.12 + 11.6i)T + (-1.45e3 - 840.5i)T^{2} \) |
| 43 | \( 1 + (43.5 + 25.1i)T + (924.5 + 1.60e3i)T^{2} \) |
| 47 | \( 1 + (24.3 - 24.3i)T - 2.20e3iT^{2} \) |
| 53 | \( 1 - 65.5T + 2.80e3T^{2} \) |
| 59 | \( 1 + (19.1 + 71.6i)T + (-3.01e3 + 1.74e3i)T^{2} \) |
| 61 | \( 1 + (45.4 - 78.6i)T + (-1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (24.4 - 91.3i)T + (-3.88e3 - 2.24e3i)T^{2} \) |
| 71 | \( 1 + (65.5 - 17.5i)T + (4.36e3 - 2.52e3i)T^{2} \) |
| 73 | \( 1 + (-51.8 + 51.8i)T - 5.32e3iT^{2} \) |
| 79 | \( 1 + 49.1T + 6.24e3T^{2} \) |
| 83 | \( 1 + (-70.5 - 70.5i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 + (-81.4 - 21.8i)T + (6.85e3 + 3.96e3i)T^{2} \) |
| 97 | \( 1 + (-65.3 + 17.5i)T + (8.14e3 - 4.70e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.35142516046620828081521244828, −11.51638890808604265021704572004, −10.48778063528445262381746296365, −9.794055560467097408541650992350, −8.826123595821120735252065828575, −7.81953802500352050703531451260, −5.55824486186848262527636902809, −4.31161381030572096529307518277, −3.42844829792819469798178130521, −2.24311175538488775303900171861,
1.50146664273068692397678443736, 3.33571818870031232279602261877, 5.21874891922770802586694023401, 6.60445579896155941253877711789, 7.43570526037322654416840549797, 7.72653607801455728472982887234, 8.964826832601624024921996450286, 10.61200681055612556639434711208, 11.81735108317309783498370288053, 12.98749337611687994651875567659