Properties

Label 2-13e2-1.1-c7-0-78
Degree $2$
Conductor $169$
Sign $-1$
Analytic cond. $52.7930$
Root an. cond. $7.26588$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 20.4·2-s − 14.6·3-s + 289.·4-s − 478.·5-s − 299.·6-s + 1.19e3·7-s + 3.30e3·8-s − 1.97e3·9-s − 9.78e3·10-s − 975.·11-s − 4.24e3·12-s + 2.44e4·14-s + 7.01e3·15-s + 3.05e4·16-s − 1.11e4·17-s − 4.03e4·18-s − 3.38e4·19-s − 1.38e5·20-s − 1.75e4·21-s − 1.99e4·22-s − 6.06e4·23-s − 4.84e4·24-s + 1.50e5·25-s + 6.09e4·27-s + 3.47e5·28-s − 1.75e5·29-s + 1.43e5·30-s + ⋯
L(s)  = 1  + 1.80·2-s − 0.313·3-s + 2.26·4-s − 1.71·5-s − 0.566·6-s + 1.31·7-s + 2.28·8-s − 0.901·9-s − 3.09·10-s − 0.220·11-s − 0.709·12-s + 2.38·14-s + 0.536·15-s + 1.86·16-s − 0.550·17-s − 1.62·18-s − 1.13·19-s − 3.87·20-s − 0.413·21-s − 0.399·22-s − 1.03·23-s − 0.715·24-s + 1.93·25-s + 0.595·27-s + 2.98·28-s − 1.33·29-s + 0.969·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(169\)    =    \(13^{2}\)
Sign: $-1$
Analytic conductor: \(52.7930\)
Root analytic conductor: \(7.26588\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 169,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad13 \( 1 \)
good2 \( 1 - 20.4T + 128T^{2} \)
3 \( 1 + 14.6T + 2.18e3T^{2} \)
5 \( 1 + 478.T + 7.81e4T^{2} \)
7 \( 1 - 1.19e3T + 8.23e5T^{2} \)
11 \( 1 + 975.T + 1.94e7T^{2} \)
17 \( 1 + 1.11e4T + 4.10e8T^{2} \)
19 \( 1 + 3.38e4T + 8.93e8T^{2} \)
23 \( 1 + 6.06e4T + 3.40e9T^{2} \)
29 \( 1 + 1.75e5T + 1.72e10T^{2} \)
31 \( 1 + 4.16e4T + 2.75e10T^{2} \)
37 \( 1 - 2.62e5T + 9.49e10T^{2} \)
41 \( 1 + 7.46e5T + 1.94e11T^{2} \)
43 \( 1 - 3.62e5T + 2.71e11T^{2} \)
47 \( 1 + 7.89e5T + 5.06e11T^{2} \)
53 \( 1 + 9.82e5T + 1.17e12T^{2} \)
59 \( 1 + 2.62e5T + 2.48e12T^{2} \)
61 \( 1 + 4.65e5T + 3.14e12T^{2} \)
67 \( 1 - 1.90e6T + 6.06e12T^{2} \)
71 \( 1 - 4.19e6T + 9.09e12T^{2} \)
73 \( 1 - 1.24e6T + 1.10e13T^{2} \)
79 \( 1 - 3.79e6T + 1.92e13T^{2} \)
83 \( 1 - 2.82e6T + 2.71e13T^{2} \)
89 \( 1 + 7.53e6T + 4.42e13T^{2} \)
97 \( 1 + 3.25e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.21853828526237418706911353755, −11.01088278961819674926924362828, −8.389063020276736791582170682494, −7.68539159225634252296198865816, −6.43261864422283993353271493435, −5.17920525004764851116922797338, −4.40722436154141741729724402615, −3.52871671395737188729736031175, −2.09453446316473483503500166482, 0, 2.09453446316473483503500166482, 3.52871671395737188729736031175, 4.40722436154141741729724402615, 5.17920525004764851116922797338, 6.43261864422283993353271493435, 7.68539159225634252296198865816, 8.389063020276736791582170682494, 11.01088278961819674926924362828, 11.21853828526237418706911353755

Graph of the $Z$-function along the critical line