L(s) = 1 | + (1.46 + 2.52i)2-s + (5.02 − 8.70i)3-s + (−0.265 + 0.460i)4-s + 29.3·6-s + (18.3 + 2.32i)7-s + 21.8·8-s + (−36.9 − 64.0i)9-s + (−7.79 + 13.5i)11-s + (2.67 + 4.62i)12-s − 63.9·13-s + (20.9 + 49.8i)14-s + (33.9 + 58.8i)16-s + (−5.28 + 9.16i)17-s + (108. − 187. i)18-s + (19.3 + 33.5i)19-s + ⋯ |
L(s) = 1 | + (0.516 + 0.894i)2-s + (0.966 − 1.67i)3-s + (−0.0332 + 0.0575i)4-s + 1.99·6-s + (0.992 + 0.125i)7-s + 0.964·8-s + (−1.36 − 2.37i)9-s + (−0.213 + 0.370i)11-s + (0.0642 + 0.111i)12-s − 1.36·13-s + (0.399 + 0.952i)14-s + (0.531 + 0.919i)16-s + (−0.0754 + 0.130i)17-s + (1.41 − 2.45i)18-s + (0.234 + 0.405i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.756 + 0.654i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.756 + 0.654i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(3.14942 - 1.17288i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.14942 - 1.17288i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 7 | \( 1 + (-18.3 - 2.32i)T \) |
good | 2 | \( 1 + (-1.46 - 2.52i)T + (-4 + 6.92i)T^{2} \) |
| 3 | \( 1 + (-5.02 + 8.70i)T + (-13.5 - 23.3i)T^{2} \) |
| 11 | \( 1 + (7.79 - 13.5i)T + (-665.5 - 1.15e3i)T^{2} \) |
| 13 | \( 1 + 63.9T + 2.19e3T^{2} \) |
| 17 | \( 1 + (5.28 - 9.16i)T + (-2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (-19.3 - 33.5i)T + (-3.42e3 + 5.94e3i)T^{2} \) |
| 23 | \( 1 + (-12.0 - 20.8i)T + (-6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 - 226.T + 2.43e4T^{2} \) |
| 31 | \( 1 + (-71.5 + 123. i)T + (-1.48e4 - 2.57e4i)T^{2} \) |
| 37 | \( 1 + (-142. - 247. i)T + (-2.53e4 + 4.38e4i)T^{2} \) |
| 41 | \( 1 - 32.0T + 6.89e4T^{2} \) |
| 43 | \( 1 + 235.T + 7.95e4T^{2} \) |
| 47 | \( 1 + (72.1 + 124. i)T + (-5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 + (159. - 275. i)T + (-7.44e4 - 1.28e5i)T^{2} \) |
| 59 | \( 1 + (224. - 388. i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (83.3 + 144. i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (370. - 641. i)T + (-1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 + 373.T + 3.57e5T^{2} \) |
| 73 | \( 1 + (118. - 205. i)T + (-1.94e5 - 3.36e5i)T^{2} \) |
| 79 | \( 1 + (-232. - 403. i)T + (-2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 - 691.T + 5.71e5T^{2} \) |
| 89 | \( 1 + (506. + 877. i)T + (-3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 + 1.15e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.41152750402360478317410586035, −11.63379552757649579574950800236, −9.956170516666073696916722924113, −8.455546969243336562804431134788, −7.71775001247906046170871743457, −7.08914698841356124357135691538, −6.02386602858614825435974780659, −4.68805132770038269900287637400, −2.57091068716130840992606843500, −1.38769075209499028136722310905,
2.32414346508022888409811930989, 3.24283406522299603341210494301, 4.57793404528900841322987386915, 4.96301088290189902260332505065, 7.59801356365949939055697873443, 8.462666152686849098944381424862, 9.642907560001706136370363516328, 10.50786891075202608728996377141, 11.15302278484392904623306671721, 12.16841488003012795862859804676