L(s) = 1 | + (−1.69 − 0.353i)3-s + (0.469 + 0.812i)5-s + (2.75 + 1.19i)9-s + (−1.31 + 2.28i)11-s + (−2.71 − 4.69i)13-s + (−0.508 − 1.54i)15-s + 3.85·17-s − 1.09·19-s + (3.16 + 5.48i)23-s + (2.05 − 3.56i)25-s + (−4.24 − 3.00i)27-s + (−1.94 + 3.36i)29-s + (2.33 + 4.04i)31-s + (3.04 − 3.40i)33-s + 2.30·37-s + ⋯ |
L(s) = 1 | + (−0.979 − 0.203i)3-s + (0.209 + 0.363i)5-s + (0.916 + 0.399i)9-s + (−0.397 + 0.688i)11-s + (−0.751 − 1.30i)13-s + (−0.131 − 0.398i)15-s + 0.934·17-s − 0.251·19-s + (0.660 + 1.14i)23-s + (0.411 − 0.713i)25-s + (−0.816 − 0.577i)27-s + (−0.360 + 0.624i)29-s + (0.419 + 0.725i)31-s + (0.529 − 0.592i)33-s + 0.379·37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.552 - 0.833i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.552 - 0.833i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.050790975\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.050790975\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (1.69 + 0.353i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (-0.469 - 0.812i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (1.31 - 2.28i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (2.71 + 4.69i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 - 3.85T + 17T^{2} \) |
| 19 | \( 1 + 1.09T + 19T^{2} \) |
| 23 | \( 1 + (-3.16 - 5.48i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (1.94 - 3.36i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-2.33 - 4.04i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 2.30T + 37T^{2} \) |
| 41 | \( 1 + (4.12 + 7.13i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (2.14 - 3.71i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-1.32 + 2.28i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 1.27T + 53T^{2} \) |
| 59 | \( 1 + (-3.02 - 5.23i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (6.71 - 11.6i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.64 - 6.31i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 14.7T + 71T^{2} \) |
| 73 | \( 1 + 5.74T + 73T^{2} \) |
| 79 | \( 1 + (5.51 - 9.54i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (1.24 - 2.15i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 13.5T + 89T^{2} \) |
| 97 | \( 1 + (-1.75 + 3.03i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.811519132497296051682152415322, −8.549960275701370528970562850931, −7.46267648757675554983723052898, −7.22012646043601962713198896625, −6.12155861171008315406860100431, −5.33000211200466058999190658494, −4.83492789244022349656478981932, −3.47090339652815279905726140302, −2.38997450012751108376288751538, −1.03223110847777616672638492261,
0.54825955076921349334448080206, 1.89830263167812687633399299272, 3.29662638909496176090765054257, 4.50540588808464240856194354470, 5.00526120864087576722875937199, 5.96017072413000915988877392987, 6.61398850633789489292771503573, 7.48695886743064120524452440667, 8.427066630213209039497481256198, 9.413597974143889936702050471757