Properties

Label 2-1785-5.4-c1-0-94
Degree $2$
Conductor $1785$
Sign $-0.987 - 0.158i$
Analytic cond. $14.2532$
Root an. cond. $3.77535$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.304i·2-s i·3-s + 1.90·4-s + (0.355 − 2.20i)5-s − 0.304·6-s i·7-s − 1.18i·8-s − 9-s + (−0.671 − 0.108i)10-s − 6.38·11-s − 1.90i·12-s + 1.12i·13-s − 0.304·14-s + (−2.20 − 0.355i)15-s + 3.45·16-s i·17-s + ⋯
L(s)  = 1  − 0.215i·2-s − 0.577i·3-s + 0.953·4-s + (0.158 − 0.987i)5-s − 0.124·6-s − 0.377i·7-s − 0.420i·8-s − 0.333·9-s + (−0.212 − 0.0341i)10-s − 1.92·11-s − 0.550i·12-s + 0.312i·13-s − 0.0813·14-s + (−0.570 − 0.0916i)15-s + 0.863·16-s − 0.242i·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1785 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.987 - 0.158i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1785 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.987 - 0.158i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1785\)    =    \(3 \cdot 5 \cdot 7 \cdot 17\)
Sign: $-0.987 - 0.158i$
Analytic conductor: \(14.2532\)
Root analytic conductor: \(3.77535\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1785} (1429, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1785,\ (\ :1/2),\ -0.987 - 0.158i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.167148325\)
\(L(\frac12)\) \(\approx\) \(1.167148325\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + iT \)
5 \( 1 + (-0.355 + 2.20i)T \)
7 \( 1 + iT \)
17 \( 1 + iT \)
good2 \( 1 + 0.304iT - 2T^{2} \)
11 \( 1 + 6.38T + 11T^{2} \)
13 \( 1 - 1.12iT - 13T^{2} \)
19 \( 1 + 5.66T + 19T^{2} \)
23 \( 1 - 0.581iT - 23T^{2} \)
29 \( 1 + 3.76T + 29T^{2} \)
31 \( 1 - 0.646T + 31T^{2} \)
37 \( 1 - 5.95iT - 37T^{2} \)
41 \( 1 + 5.31T + 41T^{2} \)
43 \( 1 + 4.23iT - 43T^{2} \)
47 \( 1 + 5.25iT - 47T^{2} \)
53 \( 1 + 13.3iT - 53T^{2} \)
59 \( 1 - 6.85T + 59T^{2} \)
61 \( 1 - 14.0T + 61T^{2} \)
67 \( 1 - 6.03iT - 67T^{2} \)
71 \( 1 + 8.66T + 71T^{2} \)
73 \( 1 + 9.19iT - 73T^{2} \)
79 \( 1 - 4.17T + 79T^{2} \)
83 \( 1 - 10.0iT - 83T^{2} \)
89 \( 1 - 15.5T + 89T^{2} \)
97 \( 1 + 12.5iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.578860508093042786805374739607, −8.123382729593521244407586916672, −7.30023119287730498547507069564, −6.57681972569510620767441192572, −5.59339763725375980496336983943, −4.94329710165077794367201898805, −3.68446236209746252351084467474, −2.46088929123106853936319877471, −1.80018175227065106329118150079, −0.36939585687380614947259679685, 2.22409793754747032703751941227, 2.66879751712040475394040009070, 3.66848922362252952440260508693, 5.01851727651139635196186940347, 5.79923468061988693514387421919, 6.37901343247972712409562429276, 7.43854732138004211014357983294, 7.918360997139930132502077524765, 8.825025481993050207529217948326, 10.04259530047981185235677149328

Graph of the $Z$-function along the critical line