L(s) = 1 | − 0.304i·2-s − i·3-s + 1.90·4-s + (0.355 − 2.20i)5-s − 0.304·6-s − i·7-s − 1.18i·8-s − 9-s + (−0.671 − 0.108i)10-s − 6.38·11-s − 1.90i·12-s + 1.12i·13-s − 0.304·14-s + (−2.20 − 0.355i)15-s + 3.45·16-s − i·17-s + ⋯ |
L(s) = 1 | − 0.215i·2-s − 0.577i·3-s + 0.953·4-s + (0.158 − 0.987i)5-s − 0.124·6-s − 0.377i·7-s − 0.420i·8-s − 0.333·9-s + (−0.212 − 0.0341i)10-s − 1.92·11-s − 0.550i·12-s + 0.312i·13-s − 0.0813·14-s + (−0.570 − 0.0916i)15-s + 0.863·16-s − 0.242i·17-s + ⋯ |
Λ(s)=(=(1785s/2ΓC(s)L(s)(−0.987−0.158i)Λ(2−s)
Λ(s)=(=(1785s/2ΓC(s+1/2)L(s)(−0.987−0.158i)Λ(1−s)
Degree: |
2 |
Conductor: |
1785
= 3⋅5⋅7⋅17
|
Sign: |
−0.987−0.158i
|
Analytic conductor: |
14.2532 |
Root analytic conductor: |
3.77535 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1785(1429,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1785, ( :1/2), −0.987−0.158i)
|
Particular Values
L(1) |
≈ |
1.167148325 |
L(21) |
≈ |
1.167148325 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+iT |
| 5 | 1+(−0.355+2.20i)T |
| 7 | 1+iT |
| 17 | 1+iT |
good | 2 | 1+0.304iT−2T2 |
| 11 | 1+6.38T+11T2 |
| 13 | 1−1.12iT−13T2 |
| 19 | 1+5.66T+19T2 |
| 23 | 1−0.581iT−23T2 |
| 29 | 1+3.76T+29T2 |
| 31 | 1−0.646T+31T2 |
| 37 | 1−5.95iT−37T2 |
| 41 | 1+5.31T+41T2 |
| 43 | 1+4.23iT−43T2 |
| 47 | 1+5.25iT−47T2 |
| 53 | 1+13.3iT−53T2 |
| 59 | 1−6.85T+59T2 |
| 61 | 1−14.0T+61T2 |
| 67 | 1−6.03iT−67T2 |
| 71 | 1+8.66T+71T2 |
| 73 | 1+9.19iT−73T2 |
| 79 | 1−4.17T+79T2 |
| 83 | 1−10.0iT−83T2 |
| 89 | 1−15.5T+89T2 |
| 97 | 1+12.5iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.578860508093042786805374739607, −8.123382729593521244407586916672, −7.30023119287730498547507069564, −6.57681972569510620767441192572, −5.59339763725375980496336983943, −4.94329710165077794367201898805, −3.68446236209746252351084467474, −2.46088929123106853936319877471, −1.80018175227065106329118150079, −0.36939585687380614947259679685,
2.22409793754747032703751941227, 2.66879751712040475394040009070, 3.66848922362252952440260508693, 5.01851727651139635196186940347, 5.79923468061988693514387421919, 6.37901343247972712409562429276, 7.43854732138004211014357983294, 7.918360997139930132502077524765, 8.825025481993050207529217948326, 10.04259530047981185235677149328