Properties

Label 4-1792e2-1.1-c1e2-0-7
Degree $4$
Conductor $3211264$
Sign $1$
Analytic cond. $204.752$
Root an. cond. $3.78274$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·7-s + 6·9-s − 12·17-s + 6·25-s + 16·31-s − 4·41-s − 16·47-s + 3·49-s + 12·63-s + 16·71-s − 20·73-s + 32·79-s + 27·81-s + 12·89-s − 12·97-s + 32·103-s + 4·113-s − 24·119-s + 6·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 72·153-s + 157-s + ⋯
L(s)  = 1  + 0.755·7-s + 2·9-s − 2.91·17-s + 6/5·25-s + 2.87·31-s − 0.624·41-s − 2.33·47-s + 3/7·49-s + 1.51·63-s + 1.89·71-s − 2.34·73-s + 3.60·79-s + 3·81-s + 1.27·89-s − 1.21·97-s + 3.15·103-s + 0.376·113-s − 2.20·119-s + 6/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 5.82·153-s + 0.0798·157-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3211264 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3211264 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(3211264\)    =    \(2^{16} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(204.752\)
Root analytic conductor: \(3.78274\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 3211264,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.059339015\)
\(L(\frac12)\) \(\approx\) \(3.059339015\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
7$C_1$ \( ( 1 - T )^{2} \)
good3$C_2$ \( ( 1 - p T^{2} )^{2} \)
5$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
19$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
41$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \)
47$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
53$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 - p T^{2} )^{2} \)
61$C_2^2$ \( 1 - 86 T^{2} + p^{2} T^{4} \)
67$C_2^2$ \( 1 - 118 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 16 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 102 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.455564899697810592407247663845, −9.105361001425330309830059408909, −8.542412218189265106204449080903, −8.431007374193734365174550384293, −7.919749478658128228399276073598, −7.51503733376692892887126903313, −6.95009324022285998257289448568, −6.74282655436372727131412527977, −6.34838798950487487519238798343, −6.22118238633745572350094155708, −4.98023886211419191598620813075, −4.86400637365457365779841486142, −4.70044314759144490956577086640, −4.24523287725253576647584269256, −3.72728598893114482228370967194, −3.08945340157153625565987591156, −2.30882421588956529155062429466, −2.04685660685479934351914453189, −1.37384435999096037927494630262, −0.69607963127277611925559392862, 0.69607963127277611925559392862, 1.37384435999096037927494630262, 2.04685660685479934351914453189, 2.30882421588956529155062429466, 3.08945340157153625565987591156, 3.72728598893114482228370967194, 4.24523287725253576647584269256, 4.70044314759144490956577086640, 4.86400637365457365779841486142, 4.98023886211419191598620813075, 6.22118238633745572350094155708, 6.34838798950487487519238798343, 6.74282655436372727131412527977, 6.95009324022285998257289448568, 7.51503733376692892887126903313, 7.919749478658128228399276073598, 8.431007374193734365174550384293, 8.542412218189265106204449080903, 9.105361001425330309830059408909, 9.455564899697810592407247663845

Graph of the $Z$-function along the critical line