L(s) = 1 | + 2·7-s + 6·9-s − 12·17-s + 6·25-s + 16·31-s − 4·41-s − 16·47-s + 3·49-s + 12·63-s + 16·71-s − 20·73-s + 32·79-s + 27·81-s + 12·89-s − 12·97-s + 32·103-s + 4·113-s − 24·119-s + 6·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 72·153-s + 157-s + ⋯ |
L(s) = 1 | + 0.755·7-s + 2·9-s − 2.91·17-s + 6/5·25-s + 2.87·31-s − 0.624·41-s − 2.33·47-s + 3/7·49-s + 1.51·63-s + 1.89·71-s − 2.34·73-s + 3.60·79-s + 3·81-s + 1.27·89-s − 1.21·97-s + 3.15·103-s + 0.376·113-s − 2.20·119-s + 6/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 5.82·153-s + 0.0798·157-s + ⋯ |
Λ(s)=(=(3211264s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(3211264s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
3211264
= 216⋅72
|
Sign: |
1
|
Analytic conductor: |
204.752 |
Root analytic conductor: |
3.78274 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 3211264, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
3.059339015 |
L(21) |
≈ |
3.059339015 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 7 | C1 | (1−T)2 |
good | 3 | C2 | (1−pT2)2 |
| 5 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 11 | C22 | 1−6T2+p2T4 |
| 13 | C22 | 1−22T2+p2T4 |
| 17 | C2 | (1+6T+pT2)2 |
| 19 | C22 | 1+26T2+p2T4 |
| 23 | C2 | (1+pT2)2 |
| 29 | C22 | 1−22T2+p2T4 |
| 31 | C2 | (1−8T+pT2)2 |
| 37 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 41 | C2 | (1+2T+pT2)2 |
| 43 | C22 | 1−70T2+p2T4 |
| 47 | C2 | (1+8T+pT2)2 |
| 53 | C22 | 1−70T2+p2T4 |
| 59 | C2 | (1−pT2)2 |
| 61 | C22 | 1−86T2+p2T4 |
| 67 | C22 | 1−118T2+p2T4 |
| 71 | C2 | (1−8T+pT2)2 |
| 73 | C2 | (1+10T+pT2)2 |
| 79 | C2 | (1−16T+pT2)2 |
| 83 | C22 | 1−102T2+p2T4 |
| 89 | C2 | (1−6T+pT2)2 |
| 97 | C2 | (1+6T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.455564899697810592407247663845, −9.105361001425330309830059408909, −8.542412218189265106204449080903, −8.431007374193734365174550384293, −7.919749478658128228399276073598, −7.51503733376692892887126903313, −6.95009324022285998257289448568, −6.74282655436372727131412527977, −6.34838798950487487519238798343, −6.22118238633745572350094155708, −4.98023886211419191598620813075, −4.86400637365457365779841486142, −4.70044314759144490956577086640, −4.24523287725253576647584269256, −3.72728598893114482228370967194, −3.08945340157153625565987591156, −2.30882421588956529155062429466, −2.04685660685479934351914453189, −1.37384435999096037927494630262, −0.69607963127277611925559392862,
0.69607963127277611925559392862, 1.37384435999096037927494630262, 2.04685660685479934351914453189, 2.30882421588956529155062429466, 3.08945340157153625565987591156, 3.72728598893114482228370967194, 4.24523287725253576647584269256, 4.70044314759144490956577086640, 4.86400637365457365779841486142, 4.98023886211419191598620813075, 6.22118238633745572350094155708, 6.34838798950487487519238798343, 6.74282655436372727131412527977, 6.95009324022285998257289448568, 7.51503733376692892887126903313, 7.919749478658128228399276073598, 8.431007374193734365174550384293, 8.542412218189265106204449080903, 9.105361001425330309830059408909, 9.455564899697810592407247663845