Properties

Label 2-18-1.1-c15-0-3
Degree $2$
Conductor $18$
Sign $-1$
Analytic cond. $25.6848$
Root an. cond. $5.06802$
Motivic weight $15$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 128·2-s + 1.63e4·4-s − 7.76e4·5-s + 7.62e5·7-s − 2.09e6·8-s + 9.93e6·10-s − 4.80e7·11-s + 2.85e8·13-s − 9.75e7·14-s + 2.68e8·16-s + 3.17e9·17-s − 5.89e9·19-s − 1.27e9·20-s + 6.14e9·22-s + 3.33e8·23-s − 2.44e10·25-s − 3.64e10·26-s + 1.24e10·28-s − 1.17e11·29-s − 2.25e11·31-s − 3.43e10·32-s − 4.06e11·34-s − 5.91e10·35-s − 4.77e11·37-s + 7.54e11·38-s + 1.62e11·40-s − 1.19e12·41-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.444·5-s + 0.349·7-s − 0.353·8-s + 0.314·10-s − 0.742·11-s + 1.26·13-s − 0.247·14-s + 1/4·16-s + 1.87·17-s − 1.51·19-s − 0.222·20-s + 0.525·22-s + 0.0203·23-s − 0.802·25-s − 0.891·26-s + 0.174·28-s − 1.26·29-s − 1.47·31-s − 0.176·32-s − 1.32·34-s − 0.155·35-s − 0.827·37-s + 1.06·38-s + 0.157·40-s − 0.959·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 18 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(16-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 18 ^{s/2} \, \Gamma_{\C}(s+15/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(18\)    =    \(2 \cdot 3^{2}\)
Sign: $-1$
Analytic conductor: \(25.6848\)
Root analytic conductor: \(5.06802\)
Motivic weight: \(15\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 18,\ (\ :15/2),\ -1)\)

Particular Values

\(L(8)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{17}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p^{7} T \)
3 \( 1 \)
good5 \( 1 + 77646 T + p^{15} T^{2} \)
7 \( 1 - 108872 p T + p^{15} T^{2} \)
11 \( 1 + 4364652 p T + p^{15} T^{2} \)
13 \( 1 - 21933086 p T + p^{15} T^{2} \)
17 \( 1 - 3173671566 T + p^{15} T^{2} \)
19 \( 1 + 5895116260 T + p^{15} T^{2} \)
23 \( 1 - 333010392 T + p^{15} T^{2} \)
29 \( 1 + 117285392310 T + p^{15} T^{2} \)
31 \( 1 + 225821452768 T + p^{15} T^{2} \)
37 \( 1 + 477657973906 T + p^{15} T^{2} \)
41 \( 1 + 1196721561882 T + p^{15} T^{2} \)
43 \( 1 - 1066802913668 T + p^{15} T^{2} \)
47 \( 1 + 1324913565264 T + p^{15} T^{2} \)
53 \( 1 - 6573181204962 T + p^{15} T^{2} \)
59 \( 1 + 7973946241140 T + p^{15} T^{2} \)
61 \( 1 - 14311350203222 T + p^{15} T^{2} \)
67 \( 1 - 41052380998124 T + p^{15} T^{2} \)
71 \( 1 + 67253761134072 T + p^{15} T^{2} \)
73 \( 1 + 156200366359942 T + p^{15} T^{2} \)
79 \( 1 + 138004701018640 T + p^{15} T^{2} \)
83 \( 1 + 469396029824988 T + p^{15} T^{2} \)
89 \( 1 - 422649074576790 T + p^{15} T^{2} \)
97 \( 1 + 201862519502686 T + p^{15} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.65200872019784430416510463432, −12.90090046003156831724174452613, −11.41427181348589689776052072905, −10.29265357452744372394710257261, −8.603696492439207045197001822510, −7.54834229168588260930156614407, −5.71874440517255125199592008218, −3.60144223120983576285641465620, −1.65677026376851901593905306185, 0, 1.65677026376851901593905306185, 3.60144223120983576285641465620, 5.71874440517255125199592008218, 7.54834229168588260930156614407, 8.603696492439207045197001822510, 10.29265357452744372394710257261, 11.41427181348589689776052072905, 12.90090046003156831724174452613, 14.65200872019784430416510463432

Graph of the $Z$-function along the critical line