L(s) = 1 | − 2.32i·2-s + 1.14i·3-s − 3.40·4-s + (−2.01 + 0.975i)5-s + 2.67·6-s − 0.143i·7-s + 3.26i·8-s + 1.68·9-s + (2.26 + 4.67i)10-s − 2.81·11-s − 3.90i·12-s + 1.70i·13-s − 0.333·14-s + (−1.12 − 2.31i)15-s + 0.778·16-s + 3.55i·17-s + ⋯ |
L(s) = 1 | − 1.64i·2-s + 0.663i·3-s − 1.70·4-s + (−0.899 + 0.436i)5-s + 1.09·6-s − 0.0541i·7-s + 1.15i·8-s + 0.560·9-s + (0.717 + 1.47i)10-s − 0.848·11-s − 1.12i·12-s + 0.473i·13-s − 0.0890·14-s + (−0.289 − 0.596i)15-s + 0.194·16-s + 0.863i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1805 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.899 + 0.436i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1805 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.899 + 0.436i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.9031050557\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9031050557\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (2.01 - 0.975i)T \) |
| 19 | \( 1 \) |
good | 2 | \( 1 + 2.32iT - 2T^{2} \) |
| 3 | \( 1 - 1.14iT - 3T^{2} \) |
| 7 | \( 1 + 0.143iT - 7T^{2} \) |
| 11 | \( 1 + 2.81T + 11T^{2} \) |
| 13 | \( 1 - 1.70iT - 13T^{2} \) |
| 17 | \( 1 - 3.55iT - 17T^{2} \) |
| 23 | \( 1 + 7.19iT - 23T^{2} \) |
| 29 | \( 1 - 7.57T + 29T^{2} \) |
| 31 | \( 1 + 4.84T + 31T^{2} \) |
| 37 | \( 1 + 9.49iT - 37T^{2} \) |
| 41 | \( 1 - 0.187T + 41T^{2} \) |
| 43 | \( 1 + 10.9iT - 43T^{2} \) |
| 47 | \( 1 + 3.67iT - 47T^{2} \) |
| 53 | \( 1 - 1.64iT - 53T^{2} \) |
| 59 | \( 1 + 5.36T + 59T^{2} \) |
| 61 | \( 1 - 10.1T + 61T^{2} \) |
| 67 | \( 1 + 6.00iT - 67T^{2} \) |
| 71 | \( 1 + 0.540T + 71T^{2} \) |
| 73 | \( 1 + 10.4iT - 73T^{2} \) |
| 79 | \( 1 + 11.6T + 79T^{2} \) |
| 83 | \( 1 + 7.59iT - 83T^{2} \) |
| 89 | \( 1 - 1.44T + 89T^{2} \) |
| 97 | \( 1 + 8.80iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.087541178664648100902627502394, −8.549637216720581931175754430219, −7.49272642192467112829198946789, −6.63063202961297388708713959519, −5.19373171963051548590792952123, −4.24996476685690754904981442778, −3.92334819633956788244100067051, −2.92264698898556075541517273450, −1.99037406716140122151757653296, −0.40921456267304949467872692028,
1.05969387098941588006476008630, 2.88238663271292945023740199533, 4.20955702151209546864566657801, 4.98809188850503008512448519557, 5.63901161654030945371869565906, 6.73625668973475952883757758198, 7.25197096094870622125589844670, 7.944137084371562656351701354755, 8.246994395434074589169970958604, 9.285115466194032393987968266074