L(s) = 1 | + 0.641·2-s − 1.91·3-s − 7.58·4-s + 0.642·5-s − 1.22·6-s + 23.2·7-s − 9.99·8-s − 23.3·9-s + 0.411·10-s − 11·11-s + 14.5·12-s + 14.8·14-s − 1.22·15-s + 54.2·16-s − 35.1·17-s − 14.9·18-s + 37.3·19-s − 4.87·20-s − 44.4·21-s − 7.05·22-s + 121.·23-s + 19.1·24-s − 124.·25-s + 96.3·27-s − 176.·28-s − 19.7·29-s − 0.788·30-s + ⋯ |
L(s) = 1 | + 0.226·2-s − 0.368·3-s − 0.948·4-s + 0.0574·5-s − 0.0834·6-s + 1.25·7-s − 0.441·8-s − 0.864·9-s + 0.0130·10-s − 0.301·11-s + 0.349·12-s + 0.284·14-s − 0.0211·15-s + 0.848·16-s − 0.502·17-s − 0.195·18-s + 0.451·19-s − 0.0545·20-s − 0.461·21-s − 0.0683·22-s + 1.10·23-s + 0.162·24-s − 0.996·25-s + 0.686·27-s − 1.19·28-s − 0.126·29-s − 0.00479·30-s + ⋯ |
Λ(s)=(=(1859s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(1859s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 11 | 1+11T |
| 13 | 1 |
good | 2 | 1−0.641T+8T2 |
| 3 | 1+1.91T+27T2 |
| 5 | 1−0.642T+125T2 |
| 7 | 1−23.2T+343T2 |
| 17 | 1+35.1T+4.91e3T2 |
| 19 | 1−37.3T+6.85e3T2 |
| 23 | 1−121.T+1.21e4T2 |
| 29 | 1+19.7T+2.43e4T2 |
| 31 | 1−30.1T+2.97e4T2 |
| 37 | 1+193.T+5.06e4T2 |
| 41 | 1+80.8T+6.89e4T2 |
| 43 | 1−196.T+7.95e4T2 |
| 47 | 1+182.T+1.03e5T2 |
| 53 | 1−451.T+1.48e5T2 |
| 59 | 1−270.T+2.05e5T2 |
| 61 | 1−694.T+2.26e5T2 |
| 67 | 1−364.T+3.00e5T2 |
| 71 | 1+772.T+3.57e5T2 |
| 73 | 1−160.T+3.89e5T2 |
| 79 | 1−46.4T+4.93e5T2 |
| 83 | 1+520.T+5.71e5T2 |
| 89 | 1−394.T+7.04e5T2 |
| 97 | 1+17.2T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.500076957725515168410184027275, −7.911604923287478156547847355584, −6.88908071039659223806313683153, −5.68291329671982061126703647236, −5.26582578626351439165066833610, −4.55887661666210738648536287701, −3.58288330334626811770985267191, −2.43123965403167903941082102509, −1.12046292717019166173503483044, 0,
1.12046292717019166173503483044, 2.43123965403167903941082102509, 3.58288330334626811770985267191, 4.55887661666210738648536287701, 5.26582578626351439165066833610, 5.68291329671982061126703647236, 6.88908071039659223806313683153, 7.911604923287478156547847355584, 8.500076957725515168410184027275