Properties

Label 2-1859-1.1-c3-0-257
Degree $2$
Conductor $1859$
Sign $-1$
Analytic cond. $109.684$
Root an. cond. $10.4730$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.641·2-s − 1.91·3-s − 7.58·4-s + 0.642·5-s − 1.22·6-s + 23.2·7-s − 9.99·8-s − 23.3·9-s + 0.411·10-s − 11·11-s + 14.5·12-s + 14.8·14-s − 1.22·15-s + 54.2·16-s − 35.1·17-s − 14.9·18-s + 37.3·19-s − 4.87·20-s − 44.4·21-s − 7.05·22-s + 121.·23-s + 19.1·24-s − 124.·25-s + 96.3·27-s − 176.·28-s − 19.7·29-s − 0.788·30-s + ⋯
L(s)  = 1  + 0.226·2-s − 0.368·3-s − 0.948·4-s + 0.0574·5-s − 0.0834·6-s + 1.25·7-s − 0.441·8-s − 0.864·9-s + 0.0130·10-s − 0.301·11-s + 0.349·12-s + 0.284·14-s − 0.0211·15-s + 0.848·16-s − 0.502·17-s − 0.195·18-s + 0.451·19-s − 0.0545·20-s − 0.461·21-s − 0.0683·22-s + 1.10·23-s + 0.162·24-s − 0.996·25-s + 0.686·27-s − 1.19·28-s − 0.126·29-s − 0.00479·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1859 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1859 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1859\)    =    \(11 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(109.684\)
Root analytic conductor: \(10.4730\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1859,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad11 \( 1 + 11T \)
13 \( 1 \)
good2 \( 1 - 0.641T + 8T^{2} \)
3 \( 1 + 1.91T + 27T^{2} \)
5 \( 1 - 0.642T + 125T^{2} \)
7 \( 1 - 23.2T + 343T^{2} \)
17 \( 1 + 35.1T + 4.91e3T^{2} \)
19 \( 1 - 37.3T + 6.85e3T^{2} \)
23 \( 1 - 121.T + 1.21e4T^{2} \)
29 \( 1 + 19.7T + 2.43e4T^{2} \)
31 \( 1 - 30.1T + 2.97e4T^{2} \)
37 \( 1 + 193.T + 5.06e4T^{2} \)
41 \( 1 + 80.8T + 6.89e4T^{2} \)
43 \( 1 - 196.T + 7.95e4T^{2} \)
47 \( 1 + 182.T + 1.03e5T^{2} \)
53 \( 1 - 451.T + 1.48e5T^{2} \)
59 \( 1 - 270.T + 2.05e5T^{2} \)
61 \( 1 - 694.T + 2.26e5T^{2} \)
67 \( 1 - 364.T + 3.00e5T^{2} \)
71 \( 1 + 772.T + 3.57e5T^{2} \)
73 \( 1 - 160.T + 3.89e5T^{2} \)
79 \( 1 - 46.4T + 4.93e5T^{2} \)
83 \( 1 + 520.T + 5.71e5T^{2} \)
89 \( 1 - 394.T + 7.04e5T^{2} \)
97 \( 1 + 17.2T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.500076957725515168410184027275, −7.911604923287478156547847355584, −6.88908071039659223806313683153, −5.68291329671982061126703647236, −5.26582578626351439165066833610, −4.55887661666210738648536287701, −3.58288330334626811770985267191, −2.43123965403167903941082102509, −1.12046292717019166173503483044, 0, 1.12046292717019166173503483044, 2.43123965403167903941082102509, 3.58288330334626811770985267191, 4.55887661666210738648536287701, 5.26582578626351439165066833610, 5.68291329671982061126703647236, 6.88908071039659223806313683153, 7.911604923287478156547847355584, 8.500076957725515168410184027275

Graph of the $Z$-function along the critical line