Properties

Label 2-1862-1.1-c1-0-39
Degree $2$
Conductor $1862$
Sign $1$
Analytic cond. $14.8681$
Root an. cond. $3.85592$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 4·5-s + 6-s + 8-s − 2·9-s + 4·10-s + 2·11-s + 12-s + 13-s + 4·15-s + 16-s − 3·17-s − 2·18-s + 19-s + 4·20-s + 2·22-s − 23-s + 24-s + 11·25-s + 26-s − 5·27-s − 5·29-s + 4·30-s + 8·31-s + 32-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s + 1.78·5-s + 0.408·6-s + 0.353·8-s − 2/3·9-s + 1.26·10-s + 0.603·11-s + 0.288·12-s + 0.277·13-s + 1.03·15-s + 1/4·16-s − 0.727·17-s − 0.471·18-s + 0.229·19-s + 0.894·20-s + 0.426·22-s − 0.208·23-s + 0.204·24-s + 11/5·25-s + 0.196·26-s − 0.962·27-s − 0.928·29-s + 0.730·30-s + 1.43·31-s + 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1862 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1862 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1862\)    =    \(2 \cdot 7^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(14.8681\)
Root analytic conductor: \(3.85592\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1862,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.452350475\)
\(L(\frac12)\) \(\approx\) \(4.452350475\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
7 \( 1 \)
19 \( 1 - T \)
good3 \( 1 - T + p T^{2} \)
5 \( 1 - 4 T + p T^{2} \)
11 \( 1 - 2 T + p T^{2} \)
13 \( 1 - T + p T^{2} \)
17 \( 1 + 3 T + p T^{2} \)
23 \( 1 + T + p T^{2} \)
29 \( 1 + 5 T + p T^{2} \)
31 \( 1 - 8 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 - 8 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 + 8 T + p T^{2} \)
53 \( 1 + T + p T^{2} \)
59 \( 1 + 15 T + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 - 3 T + p T^{2} \)
71 \( 1 - 2 T + p T^{2} \)
73 \( 1 + 9 T + p T^{2} \)
79 \( 1 + 10 T + p T^{2} \)
83 \( 1 - 6 T + p T^{2} \)
89 \( 1 + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.254038079040445697892143439151, −8.655339283587140731226502868667, −7.60323894240594246780554900498, −6.45399284641636243911038304495, −6.09315132100286987427486982952, −5.29912825884459151712444657250, −4.32145140400317761773094051986, −3.13458058385460483521784962114, −2.39336202780458240475893030948, −1.50913345329536755396223442365, 1.50913345329536755396223442365, 2.39336202780458240475893030948, 3.13458058385460483521784962114, 4.32145140400317761773094051986, 5.29912825884459151712444657250, 6.09315132100286987427486982952, 6.45399284641636243911038304495, 7.60323894240594246780554900498, 8.655339283587140731226502868667, 9.254038079040445697892143439151

Graph of the $Z$-function along the critical line