Properties

Label 2-1881-1.1-c1-0-1
Degree $2$
Conductor $1881$
Sign $1$
Analytic cond. $15.0198$
Root an. cond. $3.87554$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.45·2-s + 0.114·4-s − 2.59·5-s − 2.00·7-s + 2.74·8-s + 3.77·10-s + 11-s − 4.45·13-s + 2.92·14-s − 4.21·16-s − 4.54·17-s + 19-s − 0.297·20-s − 1.45·22-s − 7.48·23-s + 1.72·25-s + 6.48·26-s − 0.230·28-s + 3.17·29-s + 9.34·31-s + 0.647·32-s + 6.60·34-s + 5.21·35-s − 6.84·37-s − 1.45·38-s − 7.10·40-s − 0.644·41-s + ⋯
L(s)  = 1  − 1.02·2-s + 0.0572·4-s − 1.15·5-s − 0.759·7-s + 0.969·8-s + 1.19·10-s + 0.301·11-s − 1.23·13-s + 0.780·14-s − 1.05·16-s − 1.10·17-s + 0.229·19-s − 0.0664·20-s − 0.310·22-s − 1.56·23-s + 0.344·25-s + 1.27·26-s − 0.0435·28-s + 0.589·29-s + 1.67·31-s + 0.114·32-s + 1.13·34-s + 0.880·35-s − 1.12·37-s − 0.235·38-s − 1.12·40-s − 0.100·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1881 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1881 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1881\)    =    \(3^{2} \cdot 11 \cdot 19\)
Sign: $1$
Analytic conductor: \(15.0198\)
Root analytic conductor: \(3.87554\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1881,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.2476988596\)
\(L(\frac12)\) \(\approx\) \(0.2476988596\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
11 \( 1 - T \)
19 \( 1 - T \)
good2 \( 1 + 1.45T + 2T^{2} \)
5 \( 1 + 2.59T + 5T^{2} \)
7 \( 1 + 2.00T + 7T^{2} \)
13 \( 1 + 4.45T + 13T^{2} \)
17 \( 1 + 4.54T + 17T^{2} \)
23 \( 1 + 7.48T + 23T^{2} \)
29 \( 1 - 3.17T + 29T^{2} \)
31 \( 1 - 9.34T + 31T^{2} \)
37 \( 1 + 6.84T + 37T^{2} \)
41 \( 1 + 0.644T + 41T^{2} \)
43 \( 1 + 8.07T + 43T^{2} \)
47 \( 1 + 11.6T + 47T^{2} \)
53 \( 1 - 5.53T + 53T^{2} \)
59 \( 1 + 9.16T + 59T^{2} \)
61 \( 1 - 9.45T + 61T^{2} \)
67 \( 1 - 0.113T + 67T^{2} \)
71 \( 1 - 9.84T + 71T^{2} \)
73 \( 1 + 2.38T + 73T^{2} \)
79 \( 1 + 2.01T + 79T^{2} \)
83 \( 1 - 2.90T + 83T^{2} \)
89 \( 1 - 8.82T + 89T^{2} \)
97 \( 1 - 11.0T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.236354673463371500147588553314, −8.307674940757123310161751973296, −7.973147994341432246150453209501, −7.00387542715732833414903504755, −6.46741124524642745373776241764, −4.93098622258183975261681190345, −4.29953245786613256529485147732, −3.32987825402886191946760069002, −2.03200904359066458909134711951, −0.37616945552612121761066263649, 0.37616945552612121761066263649, 2.03200904359066458909134711951, 3.32987825402886191946760069002, 4.29953245786613256529485147732, 4.93098622258183975261681190345, 6.46741124524642745373776241764, 7.00387542715732833414903504755, 7.973147994341432246150453209501, 8.307674940757123310161751973296, 9.236354673463371500147588553314

Graph of the $Z$-function along the critical line