Properties

Label 8-19e4-1.1-c5e4-0-0
Degree 88
Conductor 130321130321
Sign 11
Analytic cond. 86.229686.2296
Root an. cond. 1.745641.74564
Motivic weight 55
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 00

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9·2-s + 6·3-s + 25·4-s + 90·5-s + 54·6-s − 190·7-s − 189·8-s − 45·9-s + 810·10-s − 162·11-s + 150·12-s − 52·13-s − 1.71e3·14-s + 540·15-s − 2.68e3·16-s − 288·17-s − 405·18-s + 1.44e3·19-s + 2.25e3·20-s − 1.14e3·21-s − 1.45e3·22-s + 9.90e3·23-s − 1.13e3·24-s + 1.23e3·25-s − 468·26-s − 378·27-s − 4.75e3·28-s + ⋯
L(s)  = 1  + 1.59·2-s + 0.384·3-s + 0.781·4-s + 1.60·5-s + 0.612·6-s − 1.46·7-s − 1.04·8-s − 0.185·9-s + 2.56·10-s − 0.403·11-s + 0.300·12-s − 0.0853·13-s − 2.33·14-s + 0.619·15-s − 2.62·16-s − 0.241·17-s − 0.294·18-s + 0.917·19-s + 1.25·20-s − 0.564·21-s − 0.642·22-s + 3.90·23-s − 0.401·24-s + 0.393·25-s − 0.135·26-s − 0.0997·27-s − 1.14·28-s + ⋯

Functional equation

Λ(s)=(130321s/2ΓC(s)4L(s)=(Λ(6s)\begin{aligned}\Lambda(s)=\mathstrut & 130321 ^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}
Λ(s)=(130321s/2ΓC(s+5/2)4L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 130321 ^{s/2} \, \Gamma_{\C}(s+5/2)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

Invariants

Degree: 88
Conductor: 130321130321    =    19419^{4}
Sign: 11
Analytic conductor: 86.229686.2296
Root analytic conductor: 1.745641.74564
Motivic weight: 55
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 00
Selberg data: (8, 130321, ( :5/2,5/2,5/2,5/2), 1)(8,\ 130321,\ (\ :5/2, 5/2, 5/2, 5/2),\ 1)

Particular Values

L(3)L(3) \approx 5.6466997115.646699711
L(12)L(\frac12) \approx 5.6466997115.646699711
L(72)L(\frac{7}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppGal(Fp)\Gal(F_p)Fp(T)F_p(T)
bad19C1C_1 (1p2T)4 ( 1 - p^{2} T )^{4}
good2C2S4C_2 \wr S_4 19T+7p3T245pT3+99p2T445p6T5+7p13T69p15T7+p20T8 1 - 9 T + 7 p^{3} T^{2} - 45 p T^{3} + 99 p^{2} T^{4} - 45 p^{6} T^{5} + 7 p^{13} T^{6} - 9 p^{15} T^{7} + p^{20} T^{8}
3S4×C2S_4\times C_2 12pT+p4T214p3T3680p4T414p8T5+p14T62p16T7+p20T8 1 - 2 p T + p^{4} T^{2} - 14 p^{3} T^{3} - 680 p^{4} T^{4} - 14 p^{8} T^{5} + p^{14} T^{6} - 2 p^{16} T^{7} + p^{20} T^{8}
5C2S4C_2 \wr S_4 118pT+6869T2416538T3+19690752T4416538p5T5+6869p10T618p16T7+p20T8 1 - 18 p T + 6869 T^{2} - 416538 T^{3} + 19690752 T^{4} - 416538 p^{5} T^{5} + 6869 p^{10} T^{6} - 18 p^{16} T^{7} + p^{20} T^{8}
7C2S4C_2 \wr S_4 1+190T+66448T2+8943112T3+1679700985T4+8943112p5T5+66448p10T6+190p15T7+p20T8 1 + 190 T + 66448 T^{2} + 8943112 T^{3} + 1679700985 T^{4} + 8943112 p^{5} T^{5} + 66448 p^{10} T^{6} + 190 p^{15} T^{7} + p^{20} T^{8}
11C2S4C_2 \wr S_4 1+162T+222113T225758p2T3+42691215120T425758p7T5+222113p10T6+162p15T7+p20T8 1 + 162 T + 222113 T^{2} - 25758 p^{2} T^{3} + 42691215120 T^{4} - 25758 p^{7} T^{5} + 222113 p^{10} T^{6} + 162 p^{15} T^{7} + p^{20} T^{8}
13C2S4C_2 \wr S_4 1+4pT+1064095T2+14286724T3+533612850340T4+14286724p5T5+1064095p10T6+4p16T7+p20T8 1 + 4 p T + 1064095 T^{2} + 14286724 T^{3} + 533612850340 T^{4} + 14286724 p^{5} T^{5} + 1064095 p^{10} T^{6} + 4 p^{16} T^{7} + p^{20} T^{8}
17C2S4C_2 \wr S_4 1+288T+3627026T2+784929600T3+6864987668115T4+784929600p5T5+3627026p10T6+288p15T7+p20T8 1 + 288 T + 3627026 T^{2} + 784929600 T^{3} + 6864987668115 T^{4} + 784929600 p^{5} T^{5} + 3627026 p^{10} T^{6} + 288 p^{15} T^{7} + p^{20} T^{8}
23C2S4C_2 \wr S_4 19900T+57265943T2221115039804T3+28148059433280pT4221115039804p5T5+57265943p10T69900p15T7+p20T8 1 - 9900 T + 57265943 T^{2} - 221115039804 T^{3} + 28148059433280 p T^{4} - 221115039804 p^{5} T^{5} + 57265943 p^{10} T^{6} - 9900 p^{15} T^{7} + p^{20} T^{8}
29C2S4C_2 \wr S_4 1144pT+71351819T2225624519972T3+2142003065290872T4225624519972p5T5+71351819p10T6144p16T7+p20T8 1 - 144 p T + 71351819 T^{2} - 225624519972 T^{3} + 2142003065290872 T^{4} - 225624519972 p^{5} T^{5} + 71351819 p^{10} T^{6} - 144 p^{16} T^{7} + p^{20} T^{8}
31C2S4C_2 \wr S_4 113580T+151302028T21165085434268T3+7018944017198182T41165085434268p5T5+151302028p10T613580p15T7+p20T8 1 - 13580 T + 151302028 T^{2} - 1165085434268 T^{3} + 7018944017198182 T^{4} - 1165085434268 p^{5} T^{5} + 151302028 p^{10} T^{6} - 13580 p^{15} T^{7} + p^{20} T^{8}
37C2S4C_2 \wr S_4 11172T+102002164T2226575791900T3+10894959511730950T4226575791900p5T5+102002164p10T61172p15T7+p20T8 1 - 1172 T + 102002164 T^{2} - 226575791900 T^{3} + 10894959511730950 T^{4} - 226575791900 p^{5} T^{5} + 102002164 p^{10} T^{6} - 1172 p^{15} T^{7} + p^{20} T^{8}
41C2S4C_2 \wr S_4 19540T+376390664T22847719292012T3+61182245632018158T42847719292012p5T5+376390664p10T69540p15T7+p20T8 1 - 9540 T + 376390664 T^{2} - 2847719292012 T^{3} + 61182245632018158 T^{4} - 2847719292012 p^{5} T^{5} + 376390664 p^{10} T^{6} - 9540 p^{15} T^{7} + p^{20} T^{8}
43C2S4C_2 \wr S_4 113370T+349919077T24778978614598T3+72883448709335740T44778978614598p5T5+349919077p10T613370p15T7+p20T8 1 - 13370 T + 349919077 T^{2} - 4778978614598 T^{3} + 72883448709335740 T^{4} - 4778978614598 p^{5} T^{5} + 349919077 p^{10} T^{6} - 13370 p^{15} T^{7} + p^{20} T^{8}
47C2S4C_2 \wr S_4 128098T+933909509T217207037562194T3+322234360595690004T417207037562194p5T5+933909509p10T628098p15T7+p20T8 1 - 28098 T + 933909509 T^{2} - 17207037562194 T^{3} + 322234360595690004 T^{4} - 17207037562194 p^{5} T^{5} + 933909509 p^{10} T^{6} - 28098 p^{15} T^{7} + p^{20} T^{8}
53C2S4C_2 \wr S_4 134740T+1456787447T241166456993684T3+882183409440634596T441166456993684p5T5+1456787447p10T634740p15T7+p20T8 1 - 34740 T + 1456787447 T^{2} - 41166456993684 T^{3} + 882183409440634596 T^{4} - 41166456993684 p^{5} T^{5} + 1456787447 p^{10} T^{6} - 34740 p^{15} T^{7} + p^{20} T^{8}
59C2S4C_2 \wr S_4 19702T+1371797513T223993577393858T3+1136689473043298808T423993577393858p5T5+1371797513p10T69702p15T7+p20T8 1 - 9702 T + 1371797513 T^{2} - 23993577393858 T^{3} + 1136689473043298808 T^{4} - 23993577393858 p^{5} T^{5} + 1371797513 p^{10} T^{6} - 9702 p^{15} T^{7} + p^{20} T^{8}
61C2S4C_2 \wr S_4 1+37978T+3346471921T2+91584473440102T3+4216005782131730548T4+91584473440102p5T5+3346471921p10T6+37978p15T7+p20T8 1 + 37978 T + 3346471921 T^{2} + 91584473440102 T^{3} + 4216005782131730548 T^{4} + 91584473440102 p^{5} T^{5} + 3346471921 p^{10} T^{6} + 37978 p^{15} T^{7} + p^{20} T^{8}
67C2S4C_2 \wr S_4 1+2974T+2000657221T2+3890527525654T3+3749434838871432508T4+3890527525654p5T5+2000657221p10T6+2974p15T7+p20T8 1 + 2974 T + 2000657221 T^{2} + 3890527525654 T^{3} + 3749434838871432508 T^{4} + 3890527525654 p^{5} T^{5} + 2000657221 p^{10} T^{6} + 2974 p^{15} T^{7} + p^{20} T^{8}
71C2S4C_2 \wr S_4 132220T+6498859196T2177355735093404T3+16942037860730005206T4177355735093404p5T5+6498859196p10T632220p15T7+p20T8 1 - 32220 T + 6498859196 T^{2} - 177355735093404 T^{3} + 16942037860730005206 T^{4} - 177355735093404 p^{5} T^{5} + 6498859196 p^{10} T^{6} - 32220 p^{15} T^{7} + p^{20} T^{8}
73C2S4C_2 \wr S_4 1+86908T+10474114474T2+556957254465808T3+34844122383039134803T4+556957254465808p5T5+10474114474p10T6+86908p15T7+p20T8 1 + 86908 T + 10474114474 T^{2} + 556957254465808 T^{3} + 34844122383039134803 T^{4} + 556957254465808 p^{5} T^{5} + 10474114474 p^{10} T^{6} + 86908 p^{15} T^{7} + p^{20} T^{8}
79C2S4C_2 \wr S_4 1+165736T+18366592648T2+1437704142533512T3+92025432287503929646T4+1437704142533512p5T5+18366592648p10T6+165736p15T7+p20T8 1 + 165736 T + 18366592648 T^{2} + 1437704142533512 T^{3} + 92025432287503929646 T^{4} + 1437704142533512 p^{5} T^{5} + 18366592648 p^{10} T^{6} + 165736 p^{15} T^{7} + p^{20} T^{8}
83C2S4C_2 \wr S_4 1+146448T+19894053800T2+1704035844125424T3+ 1 + 146448 T + 19894053800 T^{2} + 1704035844125424 T^{3} + 12 ⁣ ⁣8612\!\cdots\!86T4+1704035844125424p5T5+19894053800p10T6+146448p15T7+p20T8 T^{4} + 1704035844125424 p^{5} T^{5} + 19894053800 p^{10} T^{6} + 146448 p^{15} T^{7} + p^{20} T^{8}
89C2S4C_2 \wr S_4 1+26604T+19304901620T2+380043966688740T3+ 1 + 26604 T + 19304901620 T^{2} + 380043966688740 T^{3} + 15 ⁣ ⁣3015\!\cdots\!30T4+380043966688740p5T5+19304901620p10T6+26604p15T7+p20T8 T^{4} + 380043966688740 p^{5} T^{5} + 19304901620 p^{10} T^{6} + 26604 p^{15} T^{7} + p^{20} T^{8}
97C2S4C_2 \wr S_4 1313820T+64410248872T292585510399444pT3+ 1 - 313820 T + 64410248872 T^{2} - 92585510399444 p T^{3} + 95 ⁣ ⁣2295\!\cdots\!22T492585510399444p6T5+64410248872p10T6313820p15T7+p20T8 T^{4} - 92585510399444 p^{6} T^{5} + 64410248872 p^{10} T^{6} - 313820 p^{15} T^{7} + p^{20} T^{8}
show more
show less
   L(s)=p j=18(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−12.96687291652104958723434682173, −12.86651441959391853251228096990, −12.67648076189829934273544966978, −12.05032189509184792926748834129, −11.53605699533463508928601012899, −11.46243338453512678268398738345, −10.72770315762460556906986048843, −10.25509632188816209945708433774, −9.982310217670635337506473182547, −9.522133389942607771678936063543, −9.175710294921058131929316016309, −8.889180853001673413081094775854, −8.642038056141995968441428327991, −7.67599878812951139552899366069, −6.98905513218100810884997749583, −6.80771923333134846063271359997, −6.12505511149204918988044270822, −5.89704166949710776597312157659, −5.45686701406109831448983355719, −4.63244275905827936633494839423, −4.55914218653652125256737981383, −3.25129247653077016924512970485, −2.79576152434414397203283737437, −2.71504287804881395892818353951, −0.888101548566075042548594271563, 0.888101548566075042548594271563, 2.71504287804881395892818353951, 2.79576152434414397203283737437, 3.25129247653077016924512970485, 4.55914218653652125256737981383, 4.63244275905827936633494839423, 5.45686701406109831448983355719, 5.89704166949710776597312157659, 6.12505511149204918988044270822, 6.80771923333134846063271359997, 6.98905513218100810884997749583, 7.67599878812951139552899366069, 8.642038056141995968441428327991, 8.889180853001673413081094775854, 9.175710294921058131929316016309, 9.522133389942607771678936063543, 9.982310217670635337506473182547, 10.25509632188816209945708433774, 10.72770315762460556906986048843, 11.46243338453512678268398738345, 11.53605699533463508928601012899, 12.05032189509184792926748834129, 12.67648076189829934273544966978, 12.86651441959391853251228096990, 12.96687291652104958723434682173

Graph of the ZZ-function along the critical line