L(s) = 1 | + 9·2-s + 6·3-s + 25·4-s + 90·5-s + 54·6-s − 190·7-s − 189·8-s − 45·9-s + 810·10-s − 162·11-s + 150·12-s − 52·13-s − 1.71e3·14-s + 540·15-s − 2.68e3·16-s − 288·17-s − 405·18-s + 1.44e3·19-s + 2.25e3·20-s − 1.14e3·21-s − 1.45e3·22-s + 9.90e3·23-s − 1.13e3·24-s + 1.23e3·25-s − 468·26-s − 378·27-s − 4.75e3·28-s + ⋯ |
L(s) = 1 | + 1.59·2-s + 0.384·3-s + 0.781·4-s + 1.60·5-s + 0.612·6-s − 1.46·7-s − 1.04·8-s − 0.185·9-s + 2.56·10-s − 0.403·11-s + 0.300·12-s − 0.0853·13-s − 2.33·14-s + 0.619·15-s − 2.62·16-s − 0.241·17-s − 0.294·18-s + 0.917·19-s + 1.25·20-s − 0.564·21-s − 0.642·22-s + 3.90·23-s − 0.401·24-s + 0.393·25-s − 0.135·26-s − 0.0997·27-s − 1.14·28-s + ⋯ |
Λ(s)=(=(130321s/2ΓC(s)4L(s)Λ(6−s)
Λ(s)=(=(130321s/2ΓC(s+5/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
130321
= 194
|
Sign: |
1
|
Analytic conductor: |
86.2296 |
Root analytic conductor: |
1.74564 |
Motivic weight: |
5 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 130321, ( :5/2,5/2,5/2,5/2), 1)
|
Particular Values
L(3) |
≈ |
5.646699711 |
L(21) |
≈ |
5.646699711 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 19 | C1 | (1−p2T)4 |
good | 2 | C2≀S4 | 1−9T+7p3T2−45pT3+99p2T4−45p6T5+7p13T6−9p15T7+p20T8 |
| 3 | S4×C2 | 1−2pT+p4T2−14p3T3−680p4T4−14p8T5+p14T6−2p16T7+p20T8 |
| 5 | C2≀S4 | 1−18pT+6869T2−416538T3+19690752T4−416538p5T5+6869p10T6−18p16T7+p20T8 |
| 7 | C2≀S4 | 1+190T+66448T2+8943112T3+1679700985T4+8943112p5T5+66448p10T6+190p15T7+p20T8 |
| 11 | C2≀S4 | 1+162T+222113T2−25758p2T3+42691215120T4−25758p7T5+222113p10T6+162p15T7+p20T8 |
| 13 | C2≀S4 | 1+4pT+1064095T2+14286724T3+533612850340T4+14286724p5T5+1064095p10T6+4p16T7+p20T8 |
| 17 | C2≀S4 | 1+288T+3627026T2+784929600T3+6864987668115T4+784929600p5T5+3627026p10T6+288p15T7+p20T8 |
| 23 | C2≀S4 | 1−9900T+57265943T2−221115039804T3+28148059433280pT4−221115039804p5T5+57265943p10T6−9900p15T7+p20T8 |
| 29 | C2≀S4 | 1−144pT+71351819T2−225624519972T3+2142003065290872T4−225624519972p5T5+71351819p10T6−144p16T7+p20T8 |
| 31 | C2≀S4 | 1−13580T+151302028T2−1165085434268T3+7018944017198182T4−1165085434268p5T5+151302028p10T6−13580p15T7+p20T8 |
| 37 | C2≀S4 | 1−1172T+102002164T2−226575791900T3+10894959511730950T4−226575791900p5T5+102002164p10T6−1172p15T7+p20T8 |
| 41 | C2≀S4 | 1−9540T+376390664T2−2847719292012T3+61182245632018158T4−2847719292012p5T5+376390664p10T6−9540p15T7+p20T8 |
| 43 | C2≀S4 | 1−13370T+349919077T2−4778978614598T3+72883448709335740T4−4778978614598p5T5+349919077p10T6−13370p15T7+p20T8 |
| 47 | C2≀S4 | 1−28098T+933909509T2−17207037562194T3+322234360595690004T4−17207037562194p5T5+933909509p10T6−28098p15T7+p20T8 |
| 53 | C2≀S4 | 1−34740T+1456787447T2−41166456993684T3+882183409440634596T4−41166456993684p5T5+1456787447p10T6−34740p15T7+p20T8 |
| 59 | C2≀S4 | 1−9702T+1371797513T2−23993577393858T3+1136689473043298808T4−23993577393858p5T5+1371797513p10T6−9702p15T7+p20T8 |
| 61 | C2≀S4 | 1+37978T+3346471921T2+91584473440102T3+4216005782131730548T4+91584473440102p5T5+3346471921p10T6+37978p15T7+p20T8 |
| 67 | C2≀S4 | 1+2974T+2000657221T2+3890527525654T3+3749434838871432508T4+3890527525654p5T5+2000657221p10T6+2974p15T7+p20T8 |
| 71 | C2≀S4 | 1−32220T+6498859196T2−177355735093404T3+16942037860730005206T4−177355735093404p5T5+6498859196p10T6−32220p15T7+p20T8 |
| 73 | C2≀S4 | 1+86908T+10474114474T2+556957254465808T3+34844122383039134803T4+556957254465808p5T5+10474114474p10T6+86908p15T7+p20T8 |
| 79 | C2≀S4 | 1+165736T+18366592648T2+1437704142533512T3+92025432287503929646T4+1437704142533512p5T5+18366592648p10T6+165736p15T7+p20T8 |
| 83 | C2≀S4 | 1+146448T+19894053800T2+1704035844125424T3+12⋯86T4+1704035844125424p5T5+19894053800p10T6+146448p15T7+p20T8 |
| 89 | C2≀S4 | 1+26604T+19304901620T2+380043966688740T3+15⋯30T4+380043966688740p5T5+19304901620p10T6+26604p15T7+p20T8 |
| 97 | C2≀S4 | 1−313820T+64410248872T2−92585510399444pT3+95⋯22T4−92585510399444p6T5+64410248872p10T6−313820p15T7+p20T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.96687291652104958723434682173, −12.86651441959391853251228096990, −12.67648076189829934273544966978, −12.05032189509184792926748834129, −11.53605699533463508928601012899, −11.46243338453512678268398738345, −10.72770315762460556906986048843, −10.25509632188816209945708433774, −9.982310217670635337506473182547, −9.522133389942607771678936063543, −9.175710294921058131929316016309, −8.889180853001673413081094775854, −8.642038056141995968441428327991, −7.67599878812951139552899366069, −6.98905513218100810884997749583, −6.80771923333134846063271359997, −6.12505511149204918988044270822, −5.89704166949710776597312157659, −5.45686701406109831448983355719, −4.63244275905827936633494839423, −4.55914218653652125256737981383, −3.25129247653077016924512970485, −2.79576152434414397203283737437, −2.71504287804881395892818353951, −0.888101548566075042548594271563,
0.888101548566075042548594271563, 2.71504287804881395892818353951, 2.79576152434414397203283737437, 3.25129247653077016924512970485, 4.55914218653652125256737981383, 4.63244275905827936633494839423, 5.45686701406109831448983355719, 5.89704166949710776597312157659, 6.12505511149204918988044270822, 6.80771923333134846063271359997, 6.98905513218100810884997749583, 7.67599878812951139552899366069, 8.642038056141995968441428327991, 8.889180853001673413081094775854, 9.175710294921058131929316016309, 9.522133389942607771678936063543, 9.982310217670635337506473182547, 10.25509632188816209945708433774, 10.72770315762460556906986048843, 11.46243338453512678268398738345, 11.53605699533463508928601012899, 12.05032189509184792926748834129, 12.67648076189829934273544966978, 12.86651441959391853251228096990, 12.96687291652104958723434682173