L(s) = 1 | + (0.618 − 1.61i)3-s − 2.23·5-s − 5.23·7-s + (−2.23 − 2.00i)9-s + (−1.38 + 3.61i)15-s + (−3.23 + 8.47i)21-s + 5.70i·23-s + 5.00·25-s + (−4.61 + 2.38i)27-s + 6·29-s + 11.7·35-s − 12i·41-s + 11.2i·43-s + (5.00 + 4.47i)45-s − 13.7i·47-s + ⋯ |
L(s) = 1 | + (0.356 − 0.934i)3-s − 0.999·5-s − 1.97·7-s + (−0.745 − 0.666i)9-s + (−0.356 + 0.934i)15-s + (−0.706 + 1.84i)21-s + 1.19i·23-s + 1.00·25-s + (−0.888 + 0.458i)27-s + 1.11·29-s + 1.97·35-s − 1.87i·41-s + 1.71i·43-s + (0.745 + 0.666i)45-s − 1.99i·47-s + ⋯ |
Λ(s)=(=(1920s/2ΓC(s)L(s)(0.912−0.408i)Λ(2−s)
Λ(s)=(=(1920s/2ΓC(s+1/2)L(s)(0.912−0.408i)Λ(1−s)
Degree: |
2 |
Conductor: |
1920
= 27⋅3⋅5
|
Sign: |
0.912−0.408i
|
Analytic conductor: |
15.3312 |
Root analytic conductor: |
3.91551 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1920(959,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1920, ( :1/2), 0.912−0.408i)
|
Particular Values
L(1) |
≈ |
0.6920851087 |
L(21) |
≈ |
0.6920851087 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−0.618+1.61i)T |
| 5 | 1+2.23T |
good | 7 | 1+5.23T+7T2 |
| 11 | 1−11T2 |
| 13 | 1+13T2 |
| 17 | 1+17T2 |
| 19 | 1+19T2 |
| 23 | 1−5.70iT−23T2 |
| 29 | 1−6T+29T2 |
| 31 | 1−31T2 |
| 37 | 1+37T2 |
| 41 | 1+12iT−41T2 |
| 43 | 1−11.2iT−43T2 |
| 47 | 1+13.7iT−47T2 |
| 53 | 1−53T2 |
| 59 | 1−59T2 |
| 61 | 1−8iT−61T2 |
| 67 | 1−8.18iT−67T2 |
| 71 | 1+71T2 |
| 73 | 1−73T2 |
| 79 | 1−79T2 |
| 83 | 1−4.29T+83T2 |
| 89 | 1−17.8iT−89T2 |
| 97 | 1−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.115365591252721180381405811777, −8.472325207204626714324109068252, −7.52714737963841010679996005428, −6.95704430847424740246822373561, −6.36251399546116178535706637469, −5.43591226437249346217464617614, −3.91808875249130013207707724221, −3.34431769883903162803898894090, −2.52506338656078348156080828548, −0.830386226316714201500292802031,
0.33406559510895863014558709123, 2.74350528394313331854383477052, 3.23747753694142801973158741297, 4.09567646597640512895996247776, 4.82499018857933670360990128283, 6.09605387708813105993272224185, 6.69026544663871064171687413278, 7.69608557192722666010814993555, 8.540204661585326246720798867002, 9.174790468012657029806259320400