Properties

Label 2-1920-120.59-c1-0-18
Degree $2$
Conductor $1920$
Sign $0.912 - 0.408i$
Analytic cond. $15.3312$
Root an. cond. $3.91551$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.618 − 1.61i)3-s − 2.23·5-s − 5.23·7-s + (−2.23 − 2.00i)9-s + (−1.38 + 3.61i)15-s + (−3.23 + 8.47i)21-s + 5.70i·23-s + 5.00·25-s + (−4.61 + 2.38i)27-s + 6·29-s + 11.7·35-s − 12i·41-s + 11.2i·43-s + (5.00 + 4.47i)45-s − 13.7i·47-s + ⋯
L(s)  = 1  + (0.356 − 0.934i)3-s − 0.999·5-s − 1.97·7-s + (−0.745 − 0.666i)9-s + (−0.356 + 0.934i)15-s + (−0.706 + 1.84i)21-s + 1.19i·23-s + 1.00·25-s + (−0.888 + 0.458i)27-s + 1.11·29-s + 1.97·35-s − 1.87i·41-s + 1.71i·43-s + (0.745 + 0.666i)45-s − 1.99i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.912 - 0.408i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.912 - 0.408i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1920\)    =    \(2^{7} \cdot 3 \cdot 5\)
Sign: $0.912 - 0.408i$
Analytic conductor: \(15.3312\)
Root analytic conductor: \(3.91551\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1920} (959, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1920,\ (\ :1/2),\ 0.912 - 0.408i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6920851087\)
\(L(\frac12)\) \(\approx\) \(0.6920851087\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (-0.618 + 1.61i)T \)
5 \( 1 + 2.23T \)
good7 \( 1 + 5.23T + 7T^{2} \)
11 \( 1 - 11T^{2} \)
13 \( 1 + 13T^{2} \)
17 \( 1 + 17T^{2} \)
19 \( 1 + 19T^{2} \)
23 \( 1 - 5.70iT - 23T^{2} \)
29 \( 1 - 6T + 29T^{2} \)
31 \( 1 - 31T^{2} \)
37 \( 1 + 37T^{2} \)
41 \( 1 + 12iT - 41T^{2} \)
43 \( 1 - 11.2iT - 43T^{2} \)
47 \( 1 + 13.7iT - 47T^{2} \)
53 \( 1 - 53T^{2} \)
59 \( 1 - 59T^{2} \)
61 \( 1 - 8iT - 61T^{2} \)
67 \( 1 - 8.18iT - 67T^{2} \)
71 \( 1 + 71T^{2} \)
73 \( 1 - 73T^{2} \)
79 \( 1 - 79T^{2} \)
83 \( 1 - 4.29T + 83T^{2} \)
89 \( 1 - 17.8iT - 89T^{2} \)
97 \( 1 - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.115365591252721180381405811777, −8.472325207204626714324109068252, −7.52714737963841010679996005428, −6.95704430847424740246822373561, −6.36251399546116178535706637469, −5.43591226437249346217464617614, −3.91808875249130013207707724221, −3.34431769883903162803898894090, −2.52506338656078348156080828548, −0.830386226316714201500292802031, 0.33406559510895863014558709123, 2.74350528394313331854383477052, 3.23747753694142801973158741297, 4.09567646597640512895996247776, 4.82499018857933670360990128283, 6.09605387708813105993272224185, 6.69026544663871064171687413278, 7.69608557192722666010814993555, 8.540204661585326246720798867002, 9.174790468012657029806259320400

Graph of the $Z$-function along the critical line